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This study aims to explore major neural network models - Stacked 

Denoising Autoencoder (SDA), Deep Belief Network (DBN), and 

Backpropagation - that have recently garnered attention and propose the 

most suitable and reliable artificial neural network model for real-time 

road traffic information collection. To enhance the reliability of 

experimental results, numerous experiments were conducted in this study 

under identical conditions (such as parameter values and network 

configuration) by setting different initial values for the weight vector. The 

results of the experiments were statistically validated to conclude. The 

research results showed that the SDA model exhibited the most superior 

performance, while the accuracy of the DBN was somewhat lower 

compared to the SDA model. On the other hand, the Backpropagation 

model demonstrated a relatively low predictive accuracy compared to both 

models, particularly showing a significant influence of the initial values. 
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1. INTRODUCTION 

Intelligent Transportation Systems (ITS) integrate advanced technologies such as electronics, 

control systems, and communication into conventional components of transportation systems, including 

roads, vehicles, and signal systems. ITS aims to enhance the efficiency of transportation facilities and 

increase safety, representing the next generation of transportation systems. Autonomous driving, a topic of 

recent global interest, represents the ultimate goal to be achieved within Intelligent Transportation Systems 

(ITS). To realize this goal, numerous research efforts and investments are being concentrated worldwide. 

Real-time and accurate information collection regarding road and traffic conditions is crucial for the 

intelligence of roads and autonomous driving. Various technologies have evolved to collect real-time traffic 

information such as traffic volume, speed, vehicle trajectory tracking, congestion measurement, and sudden 

event detection on roads. Currently, the widely adopted technology both domestically and internationally 

is loop detectors. However, due to several drawbacks of loop detectors, there is a growing demand for 

alternative detection systems. The disadvantages of loop detectors include frequent system errors due to 

road surface damage caused by contact and burial in the road surface, as well as difficulties in installation 

and maintenance. A range of alternative detection technologies, including video detectors, microwave 

detectors, and infrared detectors, are under consideration. Among these technologies, video detectors are 

recognized as the most effective alternative. In particular, the video processing technology that 

automatically extracts the necessary traffic information from road videos collected in real-time through 
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video cameras is considered a crucial technology not only for autonomous driving but also for establishing 

intelligent transportation systems [1]. 

Despite various research efforts utilizing image processing technology for real-time traffic 

information collection, developing an algorithm that can perceive the complex environment of roads in 

real-time perfectly is challenging due to factors such as shadows, occlusion, and image noise. To maximize 

the reliability of automatic traffic information collection in such diverse and complex visual data, effective 

algorithms based on machine learning are being employed, with a particular focus on artificial neural 

network models [2][3][4][5][6]. With the increasing interest in artificial neural network models, various 

forms of these models have been developed, and among them, the backpropagation model [7] has garnered 

considerable attention. In addition, in 2008, Hinton and Salakhutdinov [8] developed deep learning artificial 

neural networks called Deep Belief Networks (DBN), which are actively used in various fields to this day. 

Furthermore, Vincent et al. [9] introduced the Stacked Denoising Autoencoder (SDA) as a form of 

constructing deep networks, suggesting the potential superiority of SDA over DBN in their research results. 

Especially in recent years, Stacked Denoising Autoencoder (SDA) has been actively utilized in various 

fields [10][11][12] [13].  

Numerous artificial neural network models currently used in various fields have been proposed, 

and the predictive capabilities of each model can significantly vary based on factors such as data 

characteristics and network architecture. In previous research on artificial neural network models utilizing 

traffic images [1], the predictive reliability of models like Backpropagation and DBN was validated. 

However, there has been a lack of research on the application of SDA models, which share a similar deep 

learning structure with DBN. Despite the effective evaluation of SDA models as artificial neural network 

models in deep network structures, there is insufficient research on their applicability in pattern recognition 

using traffic images.  Therefore, this study aims to analyze the prediction ability and reliability of the SDA 

model suitable for collecting real-time traffic information through road image recognition, a core 

technology for implementing the Intelligent Transportation System (ITS). In addition, this study seeks to 

identify and present the characteristics of the SDA model through comparison with existing artificial neural 

network models. The results of this study could serve as a benchmark for evaluating the applicability of 

SDA artificial neural network models in various fields, including traffic engineering and planning, beyond 

the automatic analysis of traffic images for Intelligent Transport Systems. 

 

 

2. NEURAL NETWORK MODELS 

2.1.  Stacked Denoising Autoencoder 

The Stacked Denoising Autoencoder (SDA) was proposed by Pascal Vincent et al. in 2010 [9] and 

is an extension of the stacked autoencoder [14]. The core idea is to enhance the training and learning of 

more robust feature representations by adding noise through each layer of the encoder input. From a 

structural perspective, the SDA is comprised of multiple layers of an unsupervised denoising autoencoder 

network and layers of a supervised backpropagation neural network [13]. The learning process of the 

Stacked Denoising Autoencoder (SDA) consists of two stages: unsupervised learning and supervised 

learning. 

 

Step 1: Unlabeled samples are employed for the greedy layer-wise training of the denoising 

autoencoder. In this process, initial data is fed into the first layer of the denoising autoencoder for 

unsupervised training, and then the parameters W(1) of the first hidden layer are obtained. In each subsequent 

step, the previously trained layers up to k-1 are used as input to train the kth layer and acquire the parameters 

W(k). The weights obtained from the training of each layer serve as the initialization weights for the final 

deep network. 

 

Step 2:  Utilizing the initial weight values established in Step 1, a backpropagation neural network 

is employed for supervised learning with labeled data. 

 

Figure 1 illustrates the basic structure of an autoencoder and a denoising autoencoder. Denoising 

autoencoders, as shown in Figure 2[15], can be stacked to form a deep network (stacked denoising 

autoencoder) [9]. 
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(B) Denoising autoencoder architecture [9]. 

An example x is stochastically corrupted (via 

qD) to 𝑥̂. The autoencoder then maps it to y 

(via encoder fθ) and attempts to reconstruct x 

via decoder gθ′, producing reconstruction z. 

Reconstruction error is measured by loss 

LH(x, z). (A) Encoding and decoding process of an autoencoder 

Figure 1. Autoencoder and denoising autoencoder 

 

 

 
Figure 2. Stacking denoising autoencoders 

 

The Stacked Denoising Autoencoder (SDA) is composed of multiple denoising autoencoders (DA) 

stacked on top of each other. In other words, the SDA is obtained by layering DAs on one another, with the 

hidden layer inputs of the lower-level DA derived from the hidden layer outputs of the higher-level DA 

[15]. The Denoising Autoencoder (DA) is a refined version of the Autoencoder designed to mitigate the 

risk of the network learning identity features. Specifically, when an autoencoder is excessively large, it may 

merely memorize the data, resulting in an output identical to the input without achieving meaningful 

representation learning or dimensionality reduction. Denoising autoencoders address this issue by 

deliberately introducing noise, corruption, or masking certain input values, thereby enhancing their ability 

to extract valuable features and avoid mere data memorization. The Autoencoder is an unsupervised neural 

network architecture that is divided into an encoding phase and a decoding phase for a given input dataset. 

In the learning process of Autoencoder, which belongs to the unsupervised learning domain, the goal is to 

reconstruct input data without labels. In the encoding phase, the model learns the properties of the input 

data, and in the decoding phase, the goal of the autoencoder model is to reproduce the correct data (input) 

using the learned features. 
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2.2.  Deep Belief Network 

Deep learning is a machine learning approach that stands in contrast to shallow learning. It focuses 

on learning models with deep structures within the data [16]. Deep Belief Networks (DBNs) [17] require 

multiple hidden layers with a high number of hidden units to learn and extract features from raw data. In 

contrast to Backpropagation, DBNs can utilize unlabeled data for pre-training a multi-layer generative 

model in unsupervised learning, employing Restricted Boltzmann Machines (RBMs) [18]. The training of 

DBNs comprises two steps: pre-training and fine-tuning. During pre-training, each Restricted Boltzmann 

Machine (RBM) is trained independently. The output of the lower RBM serves as input for the next higher-

level RBM, and this process continues. The fine-tuning process is then performed using Backpropagation 

[19]. The algorithm for Restricted Boltzmann Machines (RBMs) can be summarized as follows [18][19].  

 

Step 1: Conduct following process for n =1…N (number of data samples) 

(a) Set visible states to nth data sample, i.e. 𝑣(𝑛.0) = 𝑥(𝑛), where 𝑥(𝑛)is nth data sample 

(b) Compute hidden probability 𝑞𝑗
(𝑛.0)

 by using Eq. (1) for all 𝑗 (number of hidden units) 

𝑞𝑗: 𝑝(ℎ𝑗 = 1|𝑣) = 𝜎(𝑏𝑗 + ∑ 𝑣𝑖𝑤𝑖𝑗)𝑖 , where  𝜎(𝑥) = 1
(1 + 𝑒𝑥𝑝( − 𝑥))⁄                                                (1) 

(c) Sample hidden state ℎ𝑗
(𝑛.0)

∈ {0,1} from 𝑞𝑗
(𝑛.0)

for all 𝑗. 

Step 2: Calculate reconstructed visible probability 𝑝𝑖
(𝑛.1)

for all 𝑖 (number of visible units) by using 

following Eq. (2)  

𝑝𝑖: 𝑝(ℎ𝑗 = 1|𝑣) = 𝜎(𝑏𝑗 + ∑ 𝑣𝑖𝑤𝑖𝑗)𝑖 , where  𝜎(𝑥) = 1
(1 + 𝑒𝑥𝑝( − 𝑥))⁄                                                 (2) 

Step 3: Compute hidden probability 𝑞𝑗
(𝑛.1)

 by using Eq. (1) for all 𝑗 (number of hidden units) 

Step 4: Compute expectations over data distribution for all i and j by using Eq. (3) 

⟨𝑣𝑖𝑞𝑗⟩
𝑑𝑎𝑡𝑎

=
1

𝑁
∑ 𝑣𝑖

(𝑛.0)
𝑞𝑗

(𝑛.0)
𝑛 ,  ⟨𝑣𝑖⟩𝑑𝑎𝑡𝑎 =

1

𝑁
∑ 𝑣𝑖

(𝑛.0)
𝑛 ,    ⟨𝑞𝑗⟩

𝑑𝑎𝑡𝑎
=

1

𝑁
∑ 𝑞𝑗

(𝑛.0)
𝑛                                      (3) 

Step 5: Compute expectations over reconstructions for all i and j by using Eq. (4)  

⟨𝑣𝑖𝑞𝑗⟩
𝑟𝑒𝑐𝑜𝑛

=
1

𝑁
∑ 𝑣𝑖

(𝑛.1)
𝑞𝑗

(𝑛.1)
𝑛 ,  ⟨𝑣𝑖⟩𝑟𝑒𝑐𝑜𝑛 =

1

𝑁
∑ 𝑣𝑖

(𝑛.1)
𝑛 ,    ⟨𝑞𝑗⟩

𝑟𝑒𝑐𝑜𝑛
=

1

𝑁
∑ 𝑞𝑗

(𝑛.1)
𝑛                                  (4) 

Step 6: Compute changes in weights and biases for all i and j by using Eq. (5)  

𝛥𝑤𝑖𝑗 = 𝜀⟨𝑣𝑖𝑞𝑗⟩
𝑑𝑎𝑡𝑎

− ⟨𝑣𝑖𝑞𝑗⟩
𝑟𝑒𝑐𝑜𝑛

, 𝛥𝑎𝑖 = 𝜀⟨𝑣𝑖⟩𝑑𝑎𝑡𝑎 − ⟨𝑣𝑖⟩𝑟𝑒𝑐𝑜𝑛 , 𝛥𝑏𝑗 = 𝜀⟨𝑞𝑗⟩
𝑑𝑎𝑡𝑎

− ⟨𝑞𝑗⟩
𝑟𝑒𝑐𝑜𝑛

              (5) 

, where 𝜀is learning rate, 𝑎𝑖is bias of ith visible unit and 𝑏𝑗is bias of jth hidden unit. 

Step 7: Apply changes in weights and biases for all i and j by using Eq. (6) 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝛥𝑤𝑖𝑗 , 𝑎𝑖 = 𝑎𝑖 + 𝛥𝑎𝑖 , 𝑏𝑗 = 𝑏𝑗 + 𝛥𝑏𝑗                                                                                      (6) 

 

2.3.  Backpropagation  

Backpropagation is one of the most popular neural networks and is widely applied to various 

problems [7]. For the backpropagation model, Backpropagation with Momentum and Prime-offset [4] was 

used in this study to improve the convergence speed and to obtain better prediction performance. The 

algorithm of the BPMP (Back-Propagation with Momentum & Prime-offset) model can be summarized as 

follows [4][20]: 

 

Step 1: Randomize initial weights and set up the input and output vectors 

Step 2: Calculate the output value for each unit of the network by using 

 Out f Netpk

l

pk

l

pk

l= ( )   where Net w Inpk

l

kj

l

pj

l

k

l

j

Kl

= +
=

−

 
1

1

                                                                (7) 

In Equation (1), 𝐼𝑛𝑝𝑗
𝑙 are inputs to the kth unit in the layer l, w is the number of synaptic weights in the 

network,  k

l
 is a bias term, Kl is the number of l layer units, p is a training pattern and 𝑓( ) is an 

activation function. 

Step 3: For the output layer, l = L, calculate the values of weight changes by using 
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 p kj

L

pk

L

pj

Lw In=    where  𝛿𝑝𝑘
𝐿 = (𝑦𝑝𝑘 − 𝑂𝑢𝑡𝑝𝑘

𝐿 )(𝑓𝑘
𝐿(𝑁𝑒𝑡𝑝𝑘

𝐿 ))
′
+ Prime- offset                             (8) 

In Equation (8), 𝑦𝑝𝑘is the desired output. 

Step 4: For the hidden layers, l = 1, ..., L-1, calculate the values of weight changes using 

 p ju

l

pj

l

ij

lw In=   ,    where    ( ) pj

l

j

l

pj

l

pk

l

kj

l

k

K

f Net w
l

=



+ +

=

+

( ) 1 1

1

1

                                                     (9) 

Step 5: Update weights on the output layers by 

 w t w t wkj

L

kj

L

p kj

L( ) ( )+ = +1                                                                                                                 (10) 

Step 6: Update synaptic weights on hidden layers by 

 w t w t wju

l

ju

l

p ju

l( ) ( )+ = +1    for l = 1,..., L-1                                                                                                                (11) 

Step 7: Repeat previous steps, until the average squared error computed over the entire training data set is 

at an acceptably small value. The error for the output units is calculated by 

 Err y Outp pk pk

L

k

KL

= −
=

( )2

1

                                                                                                                  (12) 

 

 

3. EXPERIMENTAL DESIGN 

3.1. Experimental data and network configuration 

In this study, the same experimental data used by Kim [4][5][20] for traffic scene analysis was 

employed. In this study, artificial neural networks were applied for pattern recognition of various forms 

appearing in the Region of Interest (ROI) of road images. The experimental task for training and testing 

involves recognizing three different patterns within the region of interest, each characterized as follows: 

Pattern A: The front or rear bumper of a vehicle appears in the ROI 

Pattern B: Appears in the ROI of the vehicle roof image 

Pattern C: No part of the vehicle is visible, and only the road lane markings are present in the ROI 

 

 

   
Pattern A Pattern B Pattern C 

Figure 3. Samples of experimental data for learning and testing 

 

In this study, 230 data sets (Pattern A: 100, Pattern B: 100, Pattern C: 30) were used for the training 

of the artificial neural network model, and for the reliability validation of the model after training, 700 data 

points (Pattern A: 300, Pattern B: 300, Pattern C: 100) were utilized. 

The vectors used in this study are grayscale images of size 15 x 30 pixels, so the input units are 

450. For the output vector, three units were employed to recognize three different patterns; i.e, y1 = [1 0 0], 

y2 = [0 1 0], and y3 = [0 0 1]. 

The number of hidden layers and hidden neurons greatly affects training time, so it is necessary to 

limit them for experiments. Network architecture affects the learning and prediction capabilities of neural 

network models, but there is currently no theoretical method for constructing an optimal network. Therefore, 

in this study, considering training time, the maximum number of neurons was limited to 3,000 and the 

number of hidden layers was limited to 4. The networks built for the experiments in this study were 

compared in terms of prediction performance across five configurations. The network construction was 

initially based on the model proposed by Hinton and Salakhutdinov [7], with variations introduced such as 

halving the number of hidden neurons, reducing the number of hidden layers, and adding one more hidden 

layer. The experiment included a total of five scenarios. The network configuration used in the experiments 

of this study is as follows; i.e. 500-500-2000(3hidden layers - Hinton and Salakhutdinov's network 

configuration), 250-250-1000(3hidden layers), 500-2000(2hidden layers), 500-500(2hidden layers), 500-

500-500-500(4hidden layers). The first experiment employed the network proposed by Hinton and 
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Salakhutdinov [7], while the remaining four were constructed within the range of 1,000 to 3,000 neurons, 

considering the training time and characteristics of the training data. 

 

 
Figure 3. Learning methods and hyperparameters for each neural network model 

 

3.2. Normalization for input vectors 

The input and output vectors of neural network models and all learning algorithms must be 

normalized before being used in the model [21]. The most common normalization method is as shown in 

equation (13). 

𝑥𝑝𝑘̅̅ ̅̅̅ = 
𝑥𝑝𝑘−𝑋𝑚𝑖𝑛

𝑝

𝑋𝑚𝑎𝑥
𝑝

−𝑋
𝑚𝑖𝑛
𝑝                                                                                                           (13) 

where p(p = 1,  2, . . . ,  P)  are input data sets, 𝑋 = min(𝑋𝑘
𝑝

;   k = 1,  2,   . . . ,  m)  and 𝑋𝑚𝑎𝑥
𝑝

=

max(𝑋𝑘
𝑝

;   k = 1,  2,   . . . ,  m) . In Eq. (13), 𝑋𝑚𝑖𝑛
𝑝

 and 𝑋𝑚𝑎𝑥
𝑝

 is the minimum and maximum values, 

respectively, of the input pattern and 𝑥𝑝𝑘̅̅ ̅̅̅ denotes the normalized value of the unit k of the input vector 

𝑥p = (𝑥1
𝑝

, 𝑥2
𝑝

, 𝑥3
𝑝

, … , 𝑥𝑚
𝑝 ).   This type of linear normalization method will use the range 0 to 1 for each input 

data and treat two linearly dependent data sets identically.  

In particular, normalization methods play a crucial role in artificial neural network models and 

machine learning, exerting a significant impact on the learning capabilities and predictive accuracy of the 

models [21][22]. Moreover, considering the data characteristics, nonlinear models may be more suitable as 

a normalization model for input vectors, rather than the most common linear form [23]. Therefore, in this 

study, the following nonlinear model was employed as a normalization model for input vectors. 

 

𝑥𝑝𝑖̅̅ ̅̅ =
1

1 + exp (−𝑥𝑝𝑖 + 128)
 

 (14) 

, where  𝑥𝑝𝑖̅̅ ̅̅   represents the generalized value, and  𝑥𝑝𝑖 denotes the raw input value of the p-pattern 

data. 

 

 

4. RESULTS AND DISCUSSION 

In this study, neural network models such as Backpropagation, DBN, and SDA exhibit significant 

variations in learning ability and predictive performance based on the initialization of weights. Therefore, 

to appropriately compare and evaluate these models, it is essential to conduct multiple experiments using 

the same set of parameters while employing different initial weights on the identical network. To mitigate 

the impact of initial weight values, this study performed 30 trials using distinct initial weights initialized 

with random values between -1.0 and +1.0. The networks were trained for 150 generations on the training 

set, achieving remarkably low training errors and 100% recognition accuracy. To assess the statistical 

significance of the experimental results, an analysis of variance (ANOVA) test was conducted with a 

significance level of P = 0.05. 
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ANOVA, which stands for Analysis of Variance, is a statistical test used to analyze the difference 

between the means of more than two groups. A one-way ANOVA uses one independent variable, while a 

two-way ANOVA uses two independent variables [24]. 

Tables 1 to 5 show the predictive performance of the three main models used in this study, SDA, 

DBN, and backpropagation, across different network configurations. In this study, to eliminate the 

influence of initial weights, 30 trials were conducted using weight vectors with different initial weights in 

the same network structure. 

In the network structure of 450-500-500-2000-3 (Table 1), the SDA model exhibited the highest 

prediction accuracy at 91.63%, while the DBN model showed a slightly lower prediction accuracy at 

91.27% compared to the SDA model. The Backpropagation model demonstrated the lowest prediction 

accuracy at 85.61%. Although there was a subtle difference in performance between the SDA and DBN 

models, the ANOVA analysis revealed statistically significant differences in prediction accuracy among 

the three models (SDA, DBN, and Backpropagation). 

On the other hand, in the network architecture of 450-250-250-1000-3(Table 2), the DBN model 

demonstrated an outstanding prediction accuracy of 91.68%. Following closely, the SDA model recorded 

a prediction accuracy of 90.89%, while the Backpropagation model exhibited the lowest performance at 

86.21%. In this network configuration, statistical analysis also concluded that there are statistically 

significant differences in prediction accuracy among the three models (SDA, DBN, and Backpropagation). 

 

Table 1. Performance of models on the network architecture of 450-500-500-2000-3 

Category 
Neural Network Models 

SDA DBN Backpropagation 

Training RMSE 0.0022 0.0052 0.0010 

Prediction Errors 
Pattern A 12.07 16.67 22.87 

Pattern B 39.40 42.47 57.27 

Pattern C 7.13 1.97 20.60 

Number of total errors 58.60 61.10 100.73 

Prediction error rate (%) 8.37 8.73 14.39 

Prediction accuracy (%) 91.63 91.27 85.61 

Statistical 

analysis 

Std. Deviation 5.164 3.827 13.851 

Groups 1st 2nd 3rd 

P-value (F-value) SDA-DBN: 0.037 (4.539), DBN-BP: 9.155E-22(228.201) 

 

Table 2. Performance of models on the network architecture of 450-250-250-1000-3 

Category 
Neural Network Models 

SDA DBN Backpropagation 

Training RMSE 0.0020 0.0066 0.0015 

Prediction Errors 
Pattern A 11.40 16.47 23.47 

Pattern B 41.23 39.07 63.57 

Pattern C 11.17 2.73 9.50 

Number of total errors 63.80 58.27 96.53 

Prediction error rate (%) 9.11 8.32 13.79 

Prediction accuracy (%) 90.89 91.68 86.21 

Statistical 

analysis 

Std. Deviation 7.155 6.918 9.336 

Groups 2nd 1st 3rd 

P-value (F-value) SDA-DBN: 0.003 (9.273), SDA-BP: 6.031E-22 (232.332) 

 

Table 3. Performance of models on the network architecture of 450-500-2000-3 

Category 
Neural Network Models 

SDA DBN Backpropagation 

Training RMSE 0.0018 0.0058 0.0034 

Prediction Errors 
Pattern A 11.63 12.10 22.50 

Pattern B 41.93 47.53 66.27 

Pattern C 6.07 1.80 10.10 

Number of total errors 59.63 61.43 98.87 

Prediction error rate (%) 8.52 8.78 14.12 

Prediction accuracy (%) 91.48 91.22 85.88 

Statistical 

analysis 

Std. Deviation 5.893 7.328 11.184 

Groups 1st 1st 3rd 

P-value (F-value) SDA-DBN:0.299 (1.099), DBN-BP: 4.563E-22(235.126) 
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In addition, for the network architecture of 450-500-2000-3(Table 3), the SDA model exhibited a 

slightly superior prediction accuracy of 91.48% compared to the DBN model with an accuracy of 91.22%. 

However, according to statistical validation, there is no significant difference in performance between the 

two models. On the contrary, both models (SDA, DBN) exhibited significantly superior performance 

compared to the Backpropagation model (accuracy 85.88%), and this difference was statistically 

significant.  

Additionally, for the network architecture of 450-500-500-3(Table 4), the DBN model showed 

slightly better prediction accuracy at 91.19% compared to the SDA model (accuracy of 91.67%). However, 

statistical analysis showed that there was no difference between the two models. Nevertheless, similar to 

other network configurations, both models (SDA, DBN) performed significantly better than the 

backpropagation model (accuracy 86.08%). 

Finally, in the network architecture of 450-500-500-500-500-3 (Table 5), similar to the network 

architecture of 450-500-500-2000-3, the SDA model exhibited the highest performance with an accuracy 

of 91.36%. The DBN model recorded a prediction accuracy of 90.79%, while the Backpropagation model 

showed the lowest prediction accuracy at 86.51%. The statistical analysis results also indicated that the 

SDA model outperformed both the DBN and Backpropagation models. 

 

Table 4. Performance of models on the network architecture of 450-500-500-3 

Category 
Neural Network Models 

SDA DBN Backpropagation 

Training RMSE 0.0021 0.0059 0.0016 

Prediction Errors 
Pattern A 12.67 14.13 23.40 

Pattern B 39.03 40.93 61.47 

Pattern C 9.97 3.23 12.57 

Number of total errors 61.67 58.30 97.43 

Prediction error rate (%) 8.81 8.33 13.92 

Prediction accuracy (%) 91.19 91.67 86.08 

Statistical 

analysis 

Std. Deviation 7.617 6.271 7.868 

Groups 1st 1st 3rd 

P-value (F-value) SDA-DBN: 0.067(3.493), SDA-BP: 2.790E-25 (319.994) 

 

Table 5. Performance of models on the network architecture of 450-500-500-500-500-3 

Category 
Neural Network Models 

SDA DBN Backpropagation 

Training RMSE 0.0013 0.0049 6.0669e-004 

Prediction Errors 
Pattern A 12.63 19.57 24.17 

Pattern B 40.70 43.87 61.33 

Pattern C 7.17 1.07 8.93 

Number of total errors 60.50 64.50 94.43 

Prediction error rate (%) 8.64 9.21 13.49 

Prediction accuracy (%) 91.36 90.79 86.51 

Statistical 

analysis 

Std. Deviation 6.776 6.107 7.968 

Groups 1st 2nd 3rd 

P-value (F-value) SDA-DBN: 0.020 (5.769), DBN-BP: 2.323E-23(266.698) 

 

 

The difference in prediction performance between SDA, DBP, and Backpropagation models is the 

initial weight used for training. The SDA model and DBP model are characterized by using unsupervised 

neural network models of Denoising Autoencoder and Restricted Boltzmann Machines, respectively, before 

using supervised learning models such as the Backpropagation model. On the other hand, the 

Backpropagation model is performed directly through a supervised learning model without prior training 

of an unsupervised neural network model. Therefore, as can be seen from the results of this study, the hybrid 

model combining unsupervised and supervised showed excellent prediction performance, and the same 

results will be obtained in other similar experiments. Meanwhile, in the comparison between SDA and DBP, 

which are hybrid forms, In the experiments of this study, SDA showed slightly better results than DBN, but 

there is a possibility that different results may be obtained with other data or network structures. Therefore, 

to determine the superiority or inferiority of the prediction performance of the two models (SDA, DBP), it 

is essential to conduct follow-up research through numerous additional experiments (various network 

structures, number of neurons, initial values of weight vectors, etc.). 
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5. CONCLUSION  

The purpose of this study is to establish the reliability of a traffic video analysis system using an 

optimal artificial neural network model. In this study, experiments were conducted using road traffic images 

collected in the field, and the results of this study can be used not only for road traffic image analysis but 

also for vacancy detection in parking lots. Therefore, the findings of this study are essential for the 

implementation of intelligent transportation systems and can also contribute to enhancing the reliability of 

real-time parking information systems currently deployed in various cities. 

In particular, this study compared the performance of three core artificial neural network models 

widely used in various fields: SDA, DBN, and Backpropagation. Summarizing the analysis results obtained 

through various experiments in this study, the following points are noteworthy. Firstly, within the 

constructed network in this study, the SDA model exhibited the highest predictive power. However, in 

some alternative network configurations, DBN showed relatively better predictive performance, indicating 

that the predictive abilities of each model may vary depending on the network structure. Secondly, both 

representative deep learning algorithms, SDA and DBN, demonstrated significantly better performance 

than the traditional Backpropagation model. Thirdly, it was observed that all three models (SDA, DBN, 

and Backpropagation) are highly influenced by the initial values of the weight vectors. Therefore, to 

properly evaluate the models while excluding the influence of these initial values, it is necessary to conduct 

multiple experiments with different initial values under the same conditions to draw meaningful 

conclusions. 

With the increasing interest in artificial neural networks these days, many researchers are applying 

neural network models to various fields. However, most studies draw conclusions based on a single 

experiment. As demonstrated in this study, since all models are significantly influenced by initial values, it 

is crucial to derive conclusions based on statistical analysis through multiple experiments to ensure the 

reliability of the results. In this research, to minimize the impact of changes in the initial weight vector 

value, the same conditions (network structure, hyperparameters, etc.) were run 30 times, and the results 

were statistically validated. However, more experiments are needed to obtain more accurate results. 

In this study, statistical methods were introduced to increase the reliability of the results. However, 

the 30 trials of experiments conducted in this study are only the minimum standard for statistical 

verification, and additional experiments are needed to ensure greater reliability. Therefore, limiting the 

number of experiments to 30 under the same conditions is considered a limitation and weakness of this 

study.  

In future follow-up studies, the objective is to enhance the reliability of the results obtained in this 

study and conduct additional experiments with a more diverse range of network structures (varying hidden 

layers and hidden neuron numbers) for a more accurate comparison of the three models. Moreover, there is 

a plan to increase the number of experiments from the current 30 to over 100, aiming to further enhance 

the reliability of the results. 
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