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Scale-invariant feature transform (SIFT) is widely used as an image local 

feature extraction method because of its invariance to rotation, scale, and 

illumination change. SIFT has been implemented in different program 

libraries. However, studies that analyze the performance of SIFT 

implementations have not been conducted. This study examines the 

keypoint extraction of three well-known SIFT libraries, i.e., David Lowe's 

implementation, OpenSIFT, and vlSIFT in vlfeat. Performance analysis 

was conducted on multiclass small-scale image datasets to capture the 

sensitivity of keypoint detection. Although libraries are based on the same 

algorithm, their performance differs slightly. Regarding execution time 

and the average number of keypoints detected in each image, vlSIFT 

outperforms David Lowe’s library and OpenSIFT. 
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1. INTRODUCTION  

Feature extraction is critical in image processing and computer vision, enabling machines to 

accurately recognize and categorize visual data. Scale-Invariant Feature Transform (SIFT), introduced by 

David Lowe, is one of the most widely used in image processing and computer vision, among other 

algorithms. This is due to its robustness and effectiveness in extracting features invariant to scale, rotation, 

and illumination changes [1], [2]. SIFT descriptors enable consistent feature matching across various image 

transformations, particularly useful in fields like object recognition, image stitching, and image retrieval 

[3]. SIFT's capability to identify and match distinct image features has made it a fundamental tool in 

applications like object recognition, medical imaging, augmented reality, and autonomous navigation. 

Various studies have recently utilized the SIFT algorithm in diverse applications. For example, 

researchers evaluated SIFT’s robustness in detecting image deformation in woven motifs, achieving 100% 

matching accuracy under specific settings [4]. In another study, the SIFT algorithm demonstrated its 

effectiveness in copy-paste forgery detection, proving capable of identifying altered regions in tampered 

images from challenging datasets [5]. Moreover, SIFT has been successfully applied in palm pattern 

recognition, providing faster and more accurate results than traditional methods [6]. These examples 
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highlight SIFT's versatility and underscore the importance of selecting an optimal implementation for 

different applications. 

Performance analysis of the SIFT algorithm has been studied in previous research. In [7], the focus 

is on comparing the open-source SIFT library with David Lowe's original SIFT executable regarding 

runtime and accuracy in matching keypoints and computing image transforms. The analysis reveals that the 

library is competitive with the original implementation while providing additional flexibility for developers. 

The study in [8]explores the SIFT anatomy, including algorithmic components, theoretical underpinnings, 

and practical implementations for image feature detection and matching. SIFT's ability to handle lighting, 

viewpoint, scale, and rotation variations ensures consistent performance across diverse conditions. 

However, SIFT has limitations that impact its practical use. The algorithm is computationally intensive, 

making it less suitable for real-time or large-scale applications where speed is crucial. Devices with limited 

processing power, such as mobile or embedded systems, may struggle to implement SIFT effectively. In 

[9] theoretical analysis of the SIFT algorithm with practical implementation insights was explored to 

understand its functionality and applications comprehensively. Experiments with feature extraction and 

matching under varying conditions validate SIFT's effectiveness, bridging the gap between theory and 

application while highlighting its reliability and adaptability for real-world use. 

Despite SIFT's robustness and effectiveness, different algorithm implementations may exhibit 

variations in performance due to differences in optimization and library design. These variations can impact 

critical metrics, such as execution time and the number of keypoints detected, which are essential for 

applications requiring real-time processing or sensitivity to fine-grained image features. Therefore, a direct 

comparison of these libraries is necessary to guide professionals in selecting the implementation best suited 

to their performance requirements. However, a comprehensive comparison of SIFT implementations' 

computational efficiency and keypoint detection sensitivity still needs to be explored, especially on small-

scale image datasets. 

This study focuses on the comparative performance of three major SIFT libraries: Lowe's original 

SIFT implementation, OpenSIFT, and vlSIFT (a part of the VLFeat library). Although each library is based 

on the same foundational algorithm, differences in performance metrics, such as keypoint detection speed 

and sensitivity, could impact their suitability for various applications. This research aims to identify the 

most efficient library for image keypoint extraction by examining these metrics using small-scale datasets. 

The purpose of choosing datasets with small image sizes is to capture the sensitivity of each library's 

keypoint detection. Our study contributes to the field by offering a systematic performance analysis of these 

libraries. This analysis will aid practitioners and researchers in selecting the most appropriate SIFT 

implementation for their needs. 

 

 

2. SCALE-INVARIANT FEATURE TRANSFORM (SIFT) 

2.1 SIFT Keypoint Descriptor 

SIFT extracts robust local descriptors from an image against transformations like viewpoint 

changes, noise, and contrast variations. The algorithm has two primary operations: detecting keypoints and 

extracting descriptors. It proceeds in four stages to identify and describe keypoints [8]. The first step is 

identifying keypoints as local maxima and minima in a Difference-of-Gaussian (DoG) pyramid, which 

approximates the scale-space's second-order derivatives [10], [11]. Each octave in the DoG pyramid is built 

recursively, starting with the original image for the first octave.  

 

 
Figure 1.  DoG scale-space 
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Next, a set of DoG images Dk is calculated as the difference of two consecutive Gaussian-blurred 

images, formally Dk = Gk+1 − Gk. Within an octave D(x, y, σ), where (x, y) denotes spatial position and σ is 

the scale, local extrema are detected by comparing a pixel value with its 26 neighbor pixels in D(x, y, σ). 

These are considered as keypoint candidates. Figure 2 illustrates this process. 

 

 
Figure. 2. Scale-space extrema detect 

 

After keypoint candidates had been identified in the previous step, their locations were refined to 

sub-pixel accuracy by interpolating in scale space. Keypoints with low contrast or high edge response are 

discarded due to instability. First, keypoint candidates' positions (x0 , y0, σ0) are refined to sub-pixel 

precision (x’, y’, σ’). A quadratic function D(x, y, σ) interpolates nearby data points, and its maximum is 

found by setting its derivative to zero. This produces a 3×3 linear equation system, solvable by singular 

value decomposition. If (x’, y', σ') is closer to a different integer position than (x0, y0, σ0), the process repeats 

from the new position. Next, unstable keypoint candidates are discarded. Low-contrast candidates are 

identified by an absolute function value |D(x’, y', σ')| below a threshold. Edge candidates are detected using 

H, an approximation of the Hessian 2×2 matrix of D(x, y, σ) at the refined position. Candidates with low 

cornerness, calculated from H, are discarded. 

Keypoints from the filtering are assigned canonical orientations based on dominant local scale-

space gradients. After this, each keypoint's descriptor is computed relative to its location, scale, and 

orientation to ensure invariance to these transformations. Each keypoint candidate's orientation φ is 

determined by first identifying the nearest Gaussian-blurred image L in scale. From L, the gradient 

magnitude and orientation are calculated pixel-wise. A weighted orientation histogram with 36 bins is 

constructed from the gradient orientations of sample points around the keypoint, weighted by gradient 

magnitude. The keypoint orientation φ is identified from the peak in the histogram and refined by parabolic 

interpolation. If other significant peaks (within 80% of the highest peak) exist, additional keypoints with 

the same position and scale but different orientations are created. 

Next, the keypoint descriptor is calculated. Image gradient magnitudes and orientations are 

sampled in a 16×16 region around the keypoint. To ensure orientation invariance, the coordinates of the 

descriptor and the gradient orientations are rotated relative to φ. A Gaussian weighting function is applied, 

and weighted orientation histograms over 4×4 sub-regions are created. Trilinear interpolation distributes 

gradient values into adjacent histogram bins, resulting in a 128-bin descriptor aggregated from the 8-bin 

histograms of all 16 sub-regions. The descriptor is then normalized to unit length for robustness against 

illumination changes. 

2.2 SIFT Implementations 

SIFT keypoint detector implementation from David Lowe's paper is in the form of compiled 

binaries that can run under Linux or Windows. The computer program uses images in PGM format as the 

input. Output of the program are keypoints and all information needed for keypoints matching to a file in 

an ASCII format. A Matlab program and C code are provided that can read the keypoints and match them 

between images. The program and examples can be found at [12]. 

The open-source SIFT library [13] is written in C and utilizes the OpenCV library. The SIFT 

library’s API uses OpenCV data types for images and matrices, making integrating SIFT functions into 

existing OpenCV-based vision code easy. All internal operations in the SIFT library are performed using 

OpenCV functions. The library has four main components, each represented by a different header file. The 

primary component includes functions for detecting SIFT keypoint that include two keypoint detection 

functions: one using default parameter settings from Lowe’s paper and another allowing custom parameters.  

The library implements a method for keypoint matching using a kd-tree and an approximate 

nearest-neighbor search. The library also includes functions using the RANSAC algorithm to compute 
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image transforms from feature matches. These functions are flexible, allowing developers to implement 

custom transform functions. 

VLFeat open-source library implements popular computer vision algorithms specializing in image 

understanding and local feature extraction and matching[14]. VLFeat is written in C with interfaces in 

MATLAB. vlSIFT includes a feature detector and a feature descriptor. The detector extracts a collection of 

frames or keypoints from an image. These are oriented disks attached to blob-like structures of the image. 

The frames are covariant in tracking image translations, rotations, and scalings. The effect of such 

transformations can then be undone by canonization, i.e., warping the frames (with their appearance) to a 

canonical disk. The descriptor is a coarse statistic of the gradients of the frame appearance. Due to 

canonization, the descriptors are invariant to translations, rotations, and scalings of the image. Due to their 

statistical nature, they are also robust to other and not modeled noise sources.  

 

 

3. METHOD  

The performance analysis of image keypoint extraction using various SIFT implementations was 

carried out through a structured and replicable process. First, program setup and parameter configuration 

were conducted to ensure fair conditions for all tested SIFT implementations. Each implementation was 

integrated into the experimental environment, i.e., C programming language and parameters critical to SIFT 

performance were standardized. These included the number of octaves, scales per octave, and thresholds 

for keypoint detection. Additionally, input images were preprocessed to a consistent resolution to eliminate 

variability unrelated to the algorithms. This setup ensures that the performance differences observed stem 

solely from the algorithm implementations. 

Then, the keypoint extraction was conducted on two small-scale image datasets, CIFAR-10 [15] and 

CINIC-10 [16]. These datasets were selected to challenge the SIFT implementations under varying 

complexity, scale, and content diversity conditions. Each image was processed through the SIFT 

implementations to extract keypoints, with two primary performance metrics logged during the process: 

runtime execution and the number of keypoints detected. This step ensures the analysis accounts for 

computational efficiency and feature extraction robustness. 

The logged data formed the basis for analysis and comparison among the different SIFT 

implementations. The average runtime and the average number of keypoints detected were computed for 

each implementation across the datasets. Comparative statistical analysis was performed to evaluate the 

trade-offs between runtime efficiency and detected keypoint density. These metrics ensure a balanced 

assessment of algorithmic performance, capturing both computational overhead and detection capabilities. 

Visual representations in graphs and tables highlighted the distinctions between the implementations. As 

illustrated in Figure 3, the entire process captures the key stages: setup, keypoint extraction, data logging, 

and comparative analysis.  

 

 
 

Figure 3. Performance analysis process   

 

 3.1.  Program Setup  
Each SIFT implementation was configured with identical experimental settings to ensure a fair 

and unbiased comparison. The input images were uniformly processed as 8-bit grayscale images, 

simplifying computational requirements by focusing exclusively on pixel intensity and discarding color 

information. Keypoint descriptors were set to a fixed size of 128 dimensions, consistent with the original 
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SIFT design, ensuring a robust representation of image features. Keypoint locations were defined using 

four specific parameters: row, column, scale, and orientation. The orientation parameter, ranging from 

[−𝜋,𝜋] radians, is crucial in achieving rotation invariance, enabling the algorithm to match keypoints 

regardless of image rotation reliably. 

The experiments were conducted on a system equipped with an Intel Core i3 processor and 4GB 

of memory, reflecting typical computational resources available in standard environments. This hardware 

choice ensured consistency and generalizability, allowing the results to be applied to real-world scenarios 

where resources may be limited. A uniform computational setup was used in this study to minimize 

hardware-induced variability and ensure the observed differences in performance could be attributed merely 

to the SIFT implementations being tested. 

Keypoint extraction was performed on 1,000 randomly selected images for each dataset. This 

approach ensured the dataset was representative and avoided biases associated with specific image content. 

To enhance the reliability and robustness of the results, the process was repeated 10 times for each dataset, 

effectively reducing the influence of random variations or outliers.  

3.2 Image Datasets 

The SIFT performance analysis experiments were conducted on small-scale image datasets 

CIFAR-10 and CINIC-10. The purpose of choosing a dataset with a relatively small image size is to capture 

the sensitivity of each library’s keypoint detection. The CIFAR-10 dataset (Canadian Institute for Advanced 

Research) is a collection of images commonly used for machine learning and computer vision algorithm 

research. The CIFAR-10 dataset contains 60,000 color images with 32x32 pixel sizes organized into ten 

classes. Each class has 6,000 images representing airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, 

and trucks. The classes are completely mutually exclusive. There is no overlap between automobiles and 

truck classes. The automobile class includes sedans, SUVs, and things of that sort, and the truck class 

includes only big trucks. Figure 4 shows 10 random examples of images from each class in the CIFAR-10 

dataset.  

The CINIC-10 benchmarking dataset was presented to address the inadequacies of previous 

benchmarking datasets. It is a CIFAR-10 extension that includes downsampled ImageNet images. CINIC-

10 has 270,000 images, which is 4.5 times larger than CIFAR. Since the images are the same size as in 

CIFAR, CINIC-10 can be used as a drop-in replacement for CIFAR-10. It has train, validation, and test 

splits of the same size. In some experimental situations, more than one training dataset may be necessary. 

Nonetheless, equal dataset split sizes allow for a fair assessment of generalization performance.  Each subset 

has ten identical classes to CIFAR-10 classes (90,000 images). Each class and subset has 9,000 images. 

CINIC-10 contains 1.8 times more training samples than CIFAR-10 when using the specified data split (an 

equal three-way split). CINIC-10 is intended to be interchangeable with CIFAR-10. Table 1 shows the 

number of images in CIFAR-10 and CINIC-10 datasets for each class.  

 

 
 

Figure 4.  CIFAR-10 dataset classes with 10 random images from each class. 
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Table 1. Number of Images in CIFAR-10 and CINIC-10 Datasets 

No Class 

Number of images 

CIFAR-10 CINIC-10 

1 airplane 6,000  27,000 

2 automobile 6,000  27,000 

3 bird 6,000  27,000 

4 cat 6,000  27,000 

5 deer 6,000  27,000 

6 dog 6,000  27,000 

7 frog 6,000  27,000 

8 horse 6,000  27,000 

9 ship 6,000  27,000 

10 truck 6,000  27,000 

Total 60,000 270,000 

 

3.3 Keypoint Extraction 

The keypoint extraction process in this study was performed using three SIFT implementations: 
David Lowe’s original implementation, OpenSIFT, and vlSIFT from the VLFeat library. Though each 
library is based on the same underlying SIFT algorithm, its design and optimization vary, offering distinct 
performance characteristics. The experiment utilized binary implementations of these libraries, called 
directly from a C program. This ensured a consistent execution environment and standardized the process, 
enabling an accurate comparison of their keypoint extraction capabilities. David Lowe’s original SIFT 
implementation, available as a compiled binary, accepts images in PGM format and outputs keypoints and 
descriptors in an ASCII file. This implementation served as the benchmark for comparison. OpenSIFT, an 
open-source library written in C and integrated with OpenCV, was utilized for its flexibility and ease of 
integration into computer vision pipelines. vlSIFT, part of the VLFeat library, provides an implementation 
of SIFT, with support for keypoint detection and description invariant to transformations such as scale and 
rotation. Like OpenSIFT, vlSIFT is implemented in C and supports MATLAB interfaces. During the 
experiments, the keypoint extraction process involved processing grayscale 8-bit images, ensuring 
consistency in input data across all libraries. Parameters, such as the number of octaves, scales per octave, 
and detection thresholds, were uniformly configured to provide a fair comparison. For each image, the 
program invoked the binary implementation of the respective SIFT library to perform keypoint extraction. 
The execution time for each extraction and the total number of keypoints detected were recorded in a CSV 
file for analysis. This structured approach facilitated a detailed evaluation of the three SIFT 
implementations' computational efficiency and detection sensitivity, providing insights into their suitability 
for various applications. 

 

4. RESULTS AND DISCUSSION 

This section analyzes keypoint detection experiments using various SIFT implementation 

libraries, focusing on their computational efficiency based on average execution time. The comparison 

highlights each implementation's practicality for time-sensitive applications. Table 2 shows the average 

execution time of keypoint detection for each image using the default settings provided by each SIFT 

implementation library. The bold font denotes the lowest execution time. 
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Table 2. Average execution time (in seconds) of SIFT implementations 

Library 

Dataset 

CIFAR-10 CINIC-10 

Lowe’s 0.095 0.214 

OpenSIFT 0.120 0.192 

vlSIFT 0.090 0.146 

For the CIFAR-10 dataset, vlSIFT exhibits the fastest execution time at 0.090 seconds, closely 
followed by Lowe’s at 0.095 seconds, while OpenSIFT is slightly slower at 0.120 seconds. When applied 
to the CINIC-10 dataset, the execution times increase for all implementations. Lowe’s implementation 
shows the highest execution time at 0.214 seconds, while OpenSIFT improves relative performance with 
an execution time of 0.192 seconds. vlSIFT maintains its lead with the lowest execution time of 0.146 
seconds. This consistent performance of vlSIFT across both datasets indicates its higher efficiency in 
handling larger and potentially more complex image data compared to Lowe’s and OpenSIFT 
implementations. 

Regarding keypoint detection performance, experiments are conducted by calculating the average 
number of keypoints detected per image, which are then grouped for each class. This method helps in 
assessing the sensitivity of each SIFT implementation. The underlying assumption is that more detected 
keypoints indicate better library sensitivity to image features, suggesting a more thorough extraction of 
distinctive points from the images. In other words, the more keypoints a library detects, the better its 
performance in identifying and representing unique aspects of the images. 

However, there are instances where no keypoints are detected in specific images, which can 
significantly impact the effectiveness of image retrieval processes. This issue was notably observed in the 
OpenSIFT experiments, where two images failed to yield any keypoints. The absence of keypoints poses a 
significant problem because no data is available to compare with other images in a database, undermining 
the retrieval and matching process. When an image has no detected keypoints, it cannot be effectively 
matched or compared, leading to gaps in the overall image retrieval system and potentially reducing the 
accuracy and reliability of the implementation.  

The average number of detected keypoints for each class by each library is expressed as a graph 
in Figure 5 for the CIFAR-10 dataset and Figure 6 for the CINIC-10 dataset. Figure 5 shows that vlSIFT 
consistently detects the highest number of keypoints in every image class, with averages generally staying 
above 15 and peaking above 20 for deer and ship. The Lowe method displays moderate keypoint detection, 
typically hovering around 15, with notable consistency across all image classes. OpenSIFT shows the 
lowest average keypoints detected, often below 15, with significant dips in classes like automobile and cat. 
While all three methods exhibit similar trends for specific classes, such as airplanes and trucks, where the 
detection rates are closely aligned, vlSIFT consistently outperforms Lowe and OpeSIFT. This trend is 
particularly pronounced in classes like deer and ship, where vlSIFT detection rates surpass 20 keypoints on 
average. The data suggests that vlSIFT is more effective in identifying keypoints across diverse image 
classes, whereas Lowe and OpenSIFT have relatively stable but lower performance.  

 
Figure 5. Average number of detected image keypoints for each class in the CIFAR-10 dataset.  
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 Results on the CINIC-10 dataset, as described in Figure 6, show that the vlSIFT method 

consistently detects the highest number of keypoints, with averages mostly between 14 and 16 keypoints 

across all image classes. However, the Lowe method typically detects around 10 keypoints on average, 

showing relatively stable performance but generally lower than vlSIFT. OpenSIFT has the lowest average 

keypoints detected, fluctuating around 8 to 10, with noticeable dips in certain classes like automobile and 

cat. 

Although all three methods vary in performance across different image classes, vlSIFT 

consistently outperforms the other two methods. The data indicates that while Lowe and Opensift have 

some overlap in their detection rates, vlSIFT provides the highest keypoint detection in all classes. For 

example, in the bird and horse classes, vlSIFT maintains higher detection rates than Lowe and OpenSIFT. 

In summary, the average number of detected image keypoints for all classes in both datasets is presented in 

Table 3, and the bold font denotes the highest number. 

 

Table 3. Average image keypoints detected  in the CIFAR-10 and CINIC-10 dataset 

Library 

Dataset 

CIFAR-10 CINIC-10 

Lowe’s 13.13 11.36 

OpenSIFT 11.24 9.71 

vlSIFT 18.04 14.81 

 

 
Figure 6. Average number of detected image keypoints for each class in the CINIC-10 dataset. 

 

5. CONCLUSION 

In this paper, three widely used implementations of the Scale-Invariant Feature Transform (SIFT) 

algorithm were evaluated using selected small-scale image datasets. While all three libraries (David Lowe’s 

original implementation, OpenSIFT, and vlSIFT from the VLFeat library) are based on the same theoretical 

framework, they exhibited varying performance. Image keypoint extraction experiments revealed that 

vlSIFT consistently outperformed the other implementations regarding execution time and the average 

number of keypoints detected per image. Its ability to process images faster and detect more keypoints on 

average makes vlSIFT a more efficient and practical choice for applications requiring robust feature 

detection, particularly in scenarios with constrained computational resources. 

The implications of these findings extend beyond the direct comparison of SIFT implementations. 

For the broader research field, our results highlight the importance of implementation choices when 

deploying feature detection algorithms in practical applications. The superior performance of vlSIFT 

suggests its potential for use in computationally constrained environments, such as embedded systems, or 

applications requiring rapid processing, such as real-time object detection, autonomous navigation, and 

augmented reality systems. Furthermore, its ability to detect more keypoints on average enhances its utility 

in tasks requiring high feature sensitivity, such as fine-grained image matching and medical image analysis. 
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However, the study has limitations that require further discussion. The experiments were 

conducted on a single hardware configuration, ensuring a controlled and consistent environment for 

comparison. However, this setup may not comprehensively represent the performance of these libraries 

when executed on more advanced or specialized hardware, such as GPUs or high-performance computing 

servers. Future studies could explore the scalability and efficiency of these implementations across a range 

of hardware configurations to better understand their suitability for diverse application environments.  
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