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Electrical faults have been identified as a significant contributing factor to 

electrical equipment damage. Such incidents can potentially result in a 

range of adverse consequences, including bushfires, electrical outages, and 

power shortages. The detection and classification of faults facilitates the 

delivery of superior quality of service, the preservation of the environment, 

the prevention of equipment damage, and the satisfaction of electricity line 

subscribers. In this study, we analyze the data from an electrical network 

comprising four generators of 11 kV, which have been modeled in Matlab. 

The generators are situated in pairs at either end of the transmission line. 

Subsequently, machine learning techniques are employed to detect faults 

in the transmission between lines, and machine learning models are 

utilized to classify the faults. Four distinct supervised machine learning 

classifiers are employed for comparison purposes, with the results 

presented in a confusion matrix. The results demonstrated that decision 

trees are particularly well-suited to this task, with an 88.6205% detection 

rate and a slightly higher accuracy than the random forest algorithm 

(87.9212% detection rate). The K-nearest neighbor's approach yielded a 

lower result (80.4196% of faults detected), while logistic regression 

demonstrated the lowest performance, with 34.5836% of faults detected. 

Six fault categories were found in the dataset: No-Fault (2365 

occurrences), Line A Line B to Ground Fault (1134 occurrences), Three-

Phase with Ground (1133 occurrences), Line-to-Line AB (1129 

occurrences), Three-Phase (1096 occurrences) and finally Line-to-Line 

with Ground BC (1004 occurrences). 
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1. INTRODUCTION 

The significance of electrical energy is self-evident in the context of the expansion of various 

industrial sectors, including chemical, mining, health, and others. All these industries require electrical 

energy, and the demand for it continues to grow daily. Generation, transmission, and distribution systems 

represent the primary components of an electric power system. Generating stations and distribution systems 

are interconnected through transmission lines. Transmission lines are typically utilized for bulk power 

transfer by high-voltage links between primary load centers. Conversely, distribution systems are primarily 

responsible for conveying this power to consumers through lower-voltage networks [1]. Several techniques 

are used for fault detection. Visual inspection [14] uses a specialized tool like a magnifying glass or the 

human eye to identify overt failure indications, including worn-out or broken wires. In the context of our 
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investigation, this technique is quite constrained because it solely records the faults without considering the 

originating source. Moreover, it acts after faults have occurred, and employing human labor can be 

expensive both in terms of time and money;  

a. Insulation resistance measurement: this method gauges the quality of the electrical wiring's insulation 

by comparing its value to normal using Ohm's law. The efficiency and accuracy of this approach are 

called into question by the reliance on human labor for manual measurements. [14] 

b. Load Curve Analysis: This method involves looking for anomalies in the graphical representation of 

the voltage and current data. Additionally, this method needs to be revised regarding real-time 

detection. It necessitates a visual examination of the signal curves. [9] 

c. Using real-time sensors to measure voltage and current: this method uses emplaced sensors to measure 

electrical characteristics in real time. Data can be obtained in a format that is simple to retain and use 

in real-time and delayed mode for statistical analysis and artificial intelligence algorithms. These 

models are based on well-designed and thoughtful IoT architectures. [17] 

d. Wavelet analysis: this method [also uses real-time current and voltage sensors, but] focuses on 

frequency analysis of localized waves to evaluate different frequency components at different scales, 

in contrast to typical Fourier transformations that analyze signals regarding sine and cosine functions. 

[19]  

This makes it possible to localize both time and frequency but is, as for all the above methods, insufficient 

on its own; human experience or the application of a machine learning-based solution is needed to evaluate 

the data and identify fault features.  

Machine learning techniques are numerous and widely used in this field. We present It in section 

2. Apart from the numerous restrictions associated with empirical approaches due to human intervention in 

the detection or classification process, another issue is their inflexibility in processing, especially when 

applying thresholds. The fault identification process can be less accurate, especially when facing complex 

or high-dimensional data. The results are rigid due to the incapacity to learn from data patterns and to deal 

with non-linear problems when the relationship between the input and the output could be more 

straightforward. These flaws make automatic classification the best option for efficiently solving the 

challenge of detecting and classifying electrical defects. To achieve this, we will compare four machine 

learning algorithms, namely logistic regression, decision trees, k-nearest neighbors, and random forests, for 

fault detection and classification. We will apply different tests to the data to finally compare the results 

obtained by each classifier and try to optimize the best-responding models before discussing the results and 

concluding. We could choose other algorithms like support vector machine (SVM) or neural networks in 

this work, but we decide otherwise based on multiple factors related to the data characteristics and model 

objectives. For random forests, the ensembles’ model looks suitable when it combines many decision trees 

to obtain a better global performance and demonstrate its ability to avoid overfitting. With decision trees, 

their results are easy to understand and interpret. While there are no missing or duplicated values, we 

considered it unnecessary to use the robustness of SVM, which requires an adjustment of hyperparameters 

and specific choices of kernels, making training log and interpretation difficult. As for neural networks, 

they are more suited to large data sets. With little data, they are not very effective. In addition, interpreting 

the results is not very easy, unlike the models of our choice. 

 

2. Electrical Fault and Machine Learning Overview 

2.1. Definitions 

An electrical fault is an accidental change in the nature of the current flowing in a circuit that can 

disrupt its normal operation and cause an electrical breakdown. It occurs when the intensity (I) of an electric 

current, measured in Amperes, or its voltage (U), measured in Volts, exceeds or drops below the values 

planned and designed for in a given circuit [3]. The figure 1 below shows a basic electrical grid network. 
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Figure 1. Electrical grid network overview. Source [12] 

 

Global electricity demand grew by 2.2% in 2023, down from 2.4% growth in 2022. While China, 

India, and many Southeast Asian countries experienced robust growth in electricity demand in 2023, 

advanced economies experienced significant declines due to a weak macroeconomic environment and high 

inflation, reducing manufacturing and industrial output. [11] This development does not hide the crucial 

nature of this energy for both industry and households. However, since imperfection is a common feature 

of all human activities, these electrical networks, even the best-designed ones, are subject to various 

disturbances, which can lead to unfortunate consequences. Therefore, it is imperative to implement 

mechanisms to ensure reliability in generation, transmission, and distribution through a protection system 

whose main purpose is to safeguard the entire system by detecting faults and preventing malfunctions to 

achieve adequate continuity of power supply [2]. A telling example remains the tragedy experienced on 

February 2, 2022 in the western part of the city of Kinshasa, where more than 26 people died by 

electrocution following the splitting of a transmission line cable. This situation could have been avoided if 

the detection and classification of defects had been more thorough and timely than the simple visual 

inspection of the application. 

The classification of electrical faults can be done in several ways [3] : 

1) Following the number of lines affected:  

a. Symmetric faults: affects all lines at the same time when the fault appears on the system; 

b. Non-symmetric: affects isolated parts of a transmission line. 

2) According to the typology: 

a. Single line-to-ground faults: Occur when one of the power lines comes into direct contact with 

the ground or any other low-impedance path, creating an unintended current flow from the power 

line to the ground, bypassing the electrical load and protective devices. 

b. Line-to-line faults: During line-to-line faults, one phase conductor comes into direct electrical 

contact with another phase conductor. 

c. Double line-to-ground faults: In double line-to-ground faults, the two lines contact each other 

along with the ground, hurting the generator terminal. The transmission system experiences an 

open circuit and short circuit fault. 

d. Three-phase fault: In this case, a falling tower, failure of equipment, or even a line breaking and 

touching the remaining phases can cause three-phase faults. This type of fault is rare, as 

evidenced by its share of 5% of all transmission line faults. 

e. Generator failure: Generator failure is caused by insulation breakdown between turns in the same 

slot or between the winding and the machine's steel structure. The same type of fault can take 

place in transformers. The breakdown is due to insulation deterioration, switching, and/or 

lightning over-voltages. 

2.2. Related works 

The authors [5] used the K Nearest Neighbor (KNN), Decision Tree (DT), and Support Vector 

Machine (SVM) for electrical fault detection and classification and found that the support vector machine 

has high accuracy compared to others due to the small size of training data and the ability of SVM to avoid 

the problem of overfitting. The performances of other algorithms were not presented. Robert A. Sowah et 

al. [7] proposed a DT-based approach compared with the SVM and KNN approaches under the same fault 

conditions. The test data was assessed using three (3) machine learning algorithms: K Nearest Neighbor 

(KNN), Decision Trees, and Support Vector Machines (SVM) for prediction of fault, location, and 
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classification within the single-phase transmission network. Test results showed a higher accuracy rate of 

99.42 %, obtained using the Decision Trees algorithm compared to the others investigated. In the paper [5], 

the authors used the same dataset as our research and applied it under the same conditions to different 

techniques, namely support vector machines, random forests, k-nearest neighbor, and decision tree 

algorithms. The results gave a precision of 99.69% for SVMs, 99.36% for Decision Trees, 99.56% for 

KNNs, and 99.03% for the Random Forest Classifier Model. Shakiba et al. [18] provide a comprehensive 

survey on the application of machine learning techniques in detecting and classifying faults in power 

transmission lines. The review covers traditional and modern AI techniques, including deep learning and 

ensemble methods. It emphasizes the growing role of machine learning in improving fault detection 

accuracy, speed, and robustness. The authors discuss challenges, such as data scarcity and model 

interpretability. In the research [15], the authors use convolutional neural networks (CNN) to detect and 

classify faults in power transmission components. The approach achieved a precision of 98.71% and a recall 

of 97.23% for identifying transmission line faults, mainly focusing on detecting component failures like 

insulators and missing caps.  The research [16] applied a hybrid model combining transformer networks 

with CNN for detecting high-impedance faults in power distribution systems. The model achieved a 

precision of 95.8% and a recall of 94.5%, demonstrating its effectiveness in identifying difficult-to-detect 

high-impedance faults, even with limited datasets. Finally, in [8], the authors proposed a theoretical 

framework to detect electrical faults with emphasis on high impedance environments, showing the strengths 

of each method also giving great importance to the feature extraction process, without which the majority 

of the methods may not be implemented properly. 

2.3. Machine learning algorithms 

In this section, we briefly discuss the four different machine-learning techniques we used in our research, 

including decision trees, random forests, K-nearest neighbors, and logistic regression. 

1. Logistic regression: If the dependent variable is binary, logistic regression is the best approach. Like 

other regression studies, it is a statistical approach. The dependent variable Y in logistic regression 

has values of 1 and 0 for the outcomes of interest. 

2. K Neighbors classifier: The KNN approach is a safe, supervised ML approach utilized to tackle 

classification and regression issues. Faults may be detected and recognized in distance protection 

using the KNN method. 

3. Decision tree: The DT's design is simple, and we can easily follow the tree structure to describe how 

to conclude. The vast scope of power system DTs has lately been discovered to be highly effective 

in applications such as online dynamic safety evaluation, stability to transients, and islanding 

identification. 

4. Random forest: The Random Forest algorithm is a powerful tree-learning technique in Machine 

Learning. It works by creating a number of Decision Trees during the training phase. Each tree is 

constructed using a random subset of the data set to measure a random subset of features in each 

partition. This randomness introduces variability among individual trees, reducing the risk of 

overfitting and improving overall prediction performance. 

In prediction, the algorithm aggregates the results of all trees, either by voting (for classification 

tasks) or by averaging (for regression tasks) This collaborative decision-making process, supported by 

multiple trees with their insights, provides an example of stable and precise results. Random forests are 

widely used for classification and regression functions and are known for their ability to handle complex 

data, reduce overfitting, and provide reliable forecasts in different environments. 

 

3. METHODOLOGY 

We analyze the data of a high voltage electrical network [13], consisting of four 11kV three-phase 

generators, modeled in Matlab as described in [13]. The generators are placed in pairs at each end of the 

transmission line. PMU sensors are located to detect faults in the transmission at the midpoint of the 

transmission (neutral) and classify them. The dataset consists of 7861 data points, all labeled with 4 

explanatory variables, as shown in Table 1 above. We implemented our models in Python programming 

language using the Google collaboration platform. 

3.1. Processing of dataset 

This section delves into the research dataset to understand its characteristics and prepare it for 

subsequent analysis and model development. The following steps will be the subject of this section: 

1. Description of the variables making up the dataset; 
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2. pre-treatment - data quality testing; 

3. categorization of electrical faults, and 

4. coding of variables. 

3.2. Description of variables 

Figure 2 presents the first 10 lines of the [xx-line] dataset. In the top-line, the variables names are displayed 

and described above. 

 
Figure 2. Data overview 

 

Ia, Ib, and Ic represent the current respectively in line A, B, and C. Va, Vb, and Vc express the voltage 

respectively in Line A, B, and C.      The variable A 1 indicates a fault (1) or no-fault (0) in line A (first line or phase), 

and similarly with B, the second, C, the third line, and G, the Ground. 

3.3. Checking Data Quality 

The data quality check consists of detecting missing and duplicate values. The code associated with the 

output in Figure 3 illustrates that we obtained no missing or duplicated value in the dataset. 

 
Figure 3. Data quality checking 

 

3.4. Defining electrical fault categories 

In this step, the dependent variable is the different types of electrical faults. By combining data from 

columns 'G', 'C', 'B', and 'A', we define the following classes of possible states of electrical transmission 

lines as described by the dataset provider. 

 

1. '0000': 'No Fault', 

2. '1000': 'Single Line to Ground A', 

3. '0100': 'Single Line to Ground B', 

4. '0010': 'Single Line to Ground C', 

5. '0011': 'Line-to-Line BC', 
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6. '0101': 'Line-to-Line AC', 

7. '1001': 'Line-to-Line AB', 

8. '1010': 'Line-to-Line with Ground AB', 

9. '0101': 'Line-to-Line with Ground AC', 

10. '0110': 'Line-to-Line with Ground BC', 

11. '0111': 'Three-Phase', 

12. '1111': 'Three-Phase with Ground', 

13. '1011': 'Line A Line B to Ground Fault' 

3.5. Data codification 

We have successfully transformed the output columns ('G', 'C', 'B', 'A') into a single label representing the 

type of fault. In Figure 4 we present the codification of variables. 

 

 

Figure 4. Data codification 

 

In our dataset, we don't have occurrences of the other types of faults. Hence, we will focus on building our 

Machine Learning model to detect if the transmission system is in one of the 6 defined states. 
 

4. RESULTS AND DISCUSSION 

4.1. Compute descriptive statistical parameters 

This step allows us to get an overview of the data. In figure 5, we present an overview of the dataset to 

allow us to detect, at first glance, parasitic values or other imbalances in the data. 

 

 
Figure 5. Result of statistical parameters computation 
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The table displays, as a result 7861 rows of data, each variable's mean, standard deviation, 

minimum and maximum values. The observed values indicate that the data is comprehensive and within 

the typical range.  This confirms that the dataset is balanced. 

 

4.2. Checking the data distribution 

Data distribution organizes and disseminates significant amounts of information in a meaningful 

and easy way for the audience to digest. Understanding the distribution of the data can help select the 

appropriate statistical test (which can significantly impact the results of the analysis), identify outliers in 

the data, check for normality, and visualize the data. This step ensures that the results are accurate, reliable, 

and valid. Figure 6 shows the output of the data distribution. 

 

 

Figure 6. Data distribution diagram 

 

● All variables obey the Normal law, as shown in Figure 6; 

● Current readings have wide and varied distributions, reflecting the impact of different fault 

conditions; 

● Voltage readings show more concentrated distributions around zero, indicating less variation than 

current readings. 

4.3. Correlation matrix 

The correlation matrix can reveal meaningful relationships between different metrics or groups of 

metrics, and information about these relationships can provide new insights and reveal interdependencies, 

even if the metrics come from different parts of the organization. 

In Figure 7 below, we show the generation of the correlation matrix. 

 
Figure 7. Correlation matrix generation and output 
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Here is a breakdown of some key correlations in our matrix: 

● Ia and Ib: The correlation coefficient is -0.374241, indicating a moderate negative correlation. As 

the current in line A (Ia) increases, the current in line B (Ib) tends to decrease, and vice versa. 

● Ib and Ic: The correlation coefficient is -0.528291, showing a stronger negative correlation than 

between Ia and Ib. This suggests that as Ib increases, Ic decreases more consistently. 

● Va, Vb, and Vc: These voltages show negative correlations with each other (e.g., Va and Vb have 

a correlation of -0.480247). This might be due to the nature of the electrical system, where a rise 

in voltage in one line could be associated with a drop in another. 

● Ia and Vc: With a correlation coefficient of 0.246043, there is a weak positive correlation, 

suggesting that when the current in line A increases, the voltage in line C tends to increase slightly 

as well. 

● Ic and Vc: The correlation of 0.122919 is weak, indicating a slight positive relationship between 

the current in line C and the voltage in line C. 

These correlations can give insights into how current and voltage variables interact in our electrical system, 

which is crucial for understanding and predicting faults. 

4.4. Visualization of faulty types 

The distribution of fault types in the dataset is visualized through a count plot, as presented in Figure 8. 

This plot shows the frequency of each fault type, providing insights into the most common and rare fault 

scenarios in the dataset. 

Here are the counts of each fault type in our dataset: 

- No Fault: 2365 occurrences, 

- Line A Line B to Ground Fault: 1134 occurrences, 

- Three-Phase with Ground: 1133 occurrences, 

- Line-to-Line AB: 1129 occurrences, 

- Three-Phase: 1096 occurrences, 

- Line-to-Line with Ground BC: 1004 occurrences 

-  

 

Figure 8. Electrical faults classification 

4.5. Training and test 

Because the data can be presented in different units of measure, we must bring them to the same 

unit interval. This process is called normalization and has been done by defining the average to 0 and the 

standard deviation to 1. We normalize the data so that they become reorganized within a database so that 

users can use them for subsequent queries and analysis. This step allows data to improve model performance 

and accuracy. We used 80% and 20% of the data for training and tests, respectively. We then applied the 

same data to four machine learning models: decision trees, random forest, k-nearest neighbors, and logistic 

regression, as shown by the confusion matrix in Figure 9 below. 
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Figure 9. Confusion matrix 

 

The ROC curve allows the comparison of different categorization methods. During interpretation, 

the area under the curve (AUC) is emphasized, and the model with the highest curve is the best classification 

model. The classifier performs better as its size increases. The AUC value, the area under the curve, 

represents this region.  Figure 8 below presents the AUC results of each of the four methods we used in the 

work and confirms the results of the confusion matrix. 

 

 

 
Figure 10. ROC curves 
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● Consistency with Cross-validation: Most models maintain a similar ranking in performance on 

the test set as observed in cross-validation. This indicates good generalization of the models. 

● Top Models (Test Performance): Decision Trees and Random Forests maintain high accuracy, 

with Decision Trees showing a slight edge. This suggests their robustness in handling the 

multiclass classification task. 

Finally, we present in Figure 11 all the scores that we calculated for the four different models used in our 

work. 

 

 

Figure 11. Performance models scores 

 

These results respectively present the values of precision, recall and F1 score as follows in the table 1 

bellow: 

Table 1. Performance comparison of the models 

Model Precision Recall F1 score 

Logistic regression 34% 32% 33% 

K nearest neighbours 80% 79% 78% 

Decision trees 88%, 85% 86% 

Random forest 87% 86% 86% 

4.6. Model optimization 

We used two techniques, basic feature engineering and Hyperparameter optimization using 

GridSearchCV, to optimize the two models that best responded to the test on the data, namely decision trees 

and random forests. Feature Engineering is the process of creating new features or transforming existing 

features to improve the performance of a machine-learning model. It involves selecting relevant information 

from raw data and transforming it into a format that can be easily understood by a model. It consists of four 

main steps: Feature Creation, Transformations, Feature Extraction, and Feature Selection. The figure 12 

below presents the results of optimization using basic feature engineering. Optimization by this first 

technique moves the results of the decision trees from 86.6205% to 89.2562% and from 87.9212 % to 

88.3026% for random forests. 

 

 
Figure 12. Optimization result for DT algorithm and Random Forest with Basic feature engineering 
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Hyper Parameter optimization using GridSearchCV for Decision Trees and Random Forest 

GridSearchCV optimization technology allows training by choosing data randomly (the first, those in the 

center, or the last). Applying it, it moves the results of decision trees from 86.6205% to 87.2614%. 

The figure 13 below presents the result of optimization using GridSearchCV technic. 

 

Figure 13. Hyper Parameter optimization using GridSearchCV 

4.7. Discussion 

In this section, we discuss the results obtained by comparing them with those of other research 

while giving plausible reasons that explain the values obtained. The results reveal that decision trees are 

better suited to detecting electrical faults (with an accuracy of 88.6205% of faults detected). This robustness 

certainly earns it its top-of-the-list performance and corroborates the results obtained by other researchers 

[7].  However, processing a larger volume of data might be costly and impact accuracy. The K nearest 

neighbors approach, support vector machines, or deep learning may be preferred because of their 

algorithmic complexity and are better suited to huge volumes of data. The data set utilized in our study 

proved highly inappropriate for logistic regression because of the large number of explanatory values, 

rendering the model useless. [10] The precision obtained by the four models we designed is less accurate 

than those based on support vector machines and deep learning. This is consistent with [5], which obtained 

99.69% precision with SVM with the same dataset, [15], and [16], which obtained 98.71% and 95.8% 

accuracy, respectively. However, the reasons that led us not to use them remain well-founded, as we 

consider it inappropriate to use deep models for only 1718 data instances for [15] and 1644 for [16]. 

Considering the optimization results, feature engineering proved to be better than hyperparameter 

optimization. However, we question the choice of parameters in the second technique. The classification of 

faults reveals six different categories: no-fault (2365 occurrences), Line A, Line B to Ground Fault (1134 

occurrences), Three-Phase with Ground (1133 occurrences), Line-to-Line AB (1129 occurrences), Three-

Phase (1096 occurrences), and finally Line-to-Line with Ground BC (1004 occurrences). 

 

4. CONCLUSION  

Today, the electrical energy sector is as crucial as many others in human life, creating strong 

dependencies on it, so much so that it becomes difficult, if not impossible, to do without it. This is where 

the need to detect electrical faults promptly finds all its motivation for the correct service and protection of 

production, distribution, and transmission equipment. Four techniques were pitted against each other to 

determine the best one: logistic regression, k-nearest neighbors, decision trees, and random forests. After 

preprocessing, loading, training, and testing the data, we deduced that decision trees are better suited to the 

detection of electrical faults (with an accuracy of 88.6205% of faults detected). Given the low connection 

between the variables, a more complex strategy, such as decision trees, could only be more successful. 

Decision trees excel at managing non-linear relationships between variables: by recursively partitioning the 

data based on feature values, they capture complex patterns without relying on a linear assumption between 

inputs and outputs, making them ideal for scenarios in which variables interact in complex, non-linear ways. 

We cannot remark on their resilience to noise because the dataset was balanced. For large datasets, decision 

trees may need to be simplified (e.g., by limiting tree depth), whereas random forests are more scalable but 

need more resources. To answer the initial questions, yes, it is possible to use artificial intelligence tools, 

especially machine learning, to detect and classify electrical faults. The method that performed better was 

the one based on decision trees. This approach allows the decision-maker to have a dashboard with results 

ready to be used, making supervision tasks easier. Also, on a societal level, with more anticipation, it will 

go without saying that the number of faults observed on the lines will be revised downwards, thus improving 

the quality of service and preserving human lives. Future studies in the Democratic Republic of Congo may 
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focus on modeling an existing transmission or distribution network and analyzing the functioning of a smart 

grid system based on IoT technology, including real-time fault detection and classification. 
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