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Understanding programming languages is vital in the ever-evolving world 

of software development. With constant updates and the emergence of 

new languages, staying informed is essential for any programmer. 

Additionally, utilizing a tagging system for data storage is a widely 

accepted practice. Our study selected queries from a Stack Overflow 

dataset using random sampling. Then, the tags were cleaned, and the data 

was separated into title, title + body, and body. After preprocessing, 

tokenizing, and padding the data, randomly split it into training and testing 

datasets. Then, various deep learning models were applied, such as Long 

Short-Term Memory, Bidirectional Long Short-Term Memory, Multilayer 

Perceptron, Convolutional Neural Network, Feedforward Neural 

Network, Gated Recurrent Unit, Recurrent Neural Network, Artificial 

Neural Network algorithms to the dataset to identify the programming 

languages from the tags. This study aims to assist in identifying the 

programming language from the question tags, which can help 

programmers better understand the problem or make it easier to 

understand other programming languages. 
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1. INTRODUCTION  

The capacity to reliably predict programming languages from textual input can significantly 

improve various applications in software development, from automating code classification to enhancing 

developer recommendation systems. This study utilizes a dataset from Stack Overflow, a well-known 

online programming community, to assess how well several cutting-edge deep learning (DL) models predict 

programming languages. The ability to program has become vital in many industries in the current digital 

era. Knowing programming is important in creating software, creating websites, or working on data analysis 

tasks [1]. 

The biggest challenge in this field is the complexity of searching programming languages that 

often contain contextual phrases, code, and language descriptions. However, noise and the irregularity of 

calculating the final result associated with a dataset of this scale [2]. The programming language models 

have to be dynamic and expansive because programming languages may evolve, and new ones are 

constantly being developed. Because the current prediction models must remain useful for different types 

of queries and to guarantee that they are properly functional, it is crucial to overcome these problems. By 

building models of programming language prediction into development environments, the tools can suggest 

the best programming languages to use. It has the advantage of preventing common mistakes and reducing 

the time it takes to begin a project.  Furthermore, by providing tools that are more consistent regarding 

language detection, the study can improve the cooperation between the developers. This may mean the 
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creation of better, less ambiguous, and integrated code and less of a problem with defects or mistakes due 

to minor linguistic differences. 

Many DL algorithms afford a rather comprehensive analysis of the programming language 

prediction, improving both reliability and robustness for a broad spectrum of input patterns. There is a 

chance to increase the effectiveness and efficacy of beginning and experienced developers. DL models that 

predict the programming languages are quite wide [3].  DL technologies have revolutionized Natural 

Language Processing (NLP), mainly in programming languages. In this study, eight DL architectures were 

used as Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), 

Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Feedforward Neural Network 

(FNN), Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN), Artificial Neural Network (ANN) 

to predict programming languages connected with SO queries. These models learn Meaningful 

representations from sequential data, extracting relevant features from question titles and bodies for a 

nuanced understanding of programming language context and improving predictions in context-dependent 

language choices. The aim is to streamline language identification and offer insights into the programming 

languages driving software development. The predictive power of these models will improve effectiveness 

in recognizing relevant languages, helping developers resolve coding problems. This study contributes to 

the software development life cycle by providing a robust tool for developers and researchers. Each of the 

models applied in the present research is useful in some way to address these complexities. For instance, 

while CNNs are highly effective for detecting local features in the text [4] because their filters slide locally 

across the input, LSTM and GRU-based recurrent models are very good at capturing sequential dependence 

because their states are only updated sequentially [5]. Also, these models offer dissimilar ways to handle 

the difficulties of textual data in the context of computer languages, and each one pays superior abilities to 

the field of NLP. 

Finally, this research contributes to future work examining other software engineering areas where 

DL models can be applied. Similar models can be developed to classify different software development 

frameworks, libraries, or design patterns in addition to language prediction. These program models will be 

increasingly valuable as software development workflows evolve and progress to pick the best collection 

of creation tools, frameworks, and approaches. This work has influenced the direction of further 

developments by demonstrating that DL can contribute to the evolution of the intelligent development 

environment’s part. The prediction models also provide distinct approaches to addressing the challenges of 

textual data within the domain of computer languages. 

 

2. LITERATURE REVIEW 

This section briefly analyses all the previous and present work in this sector. 

Isun Chehreh et al. [6] present an approach to an automated tagging system for SO using DL and 

NLP techniques. The system improves tags' performance by achieving high accuracy and speed, employing 

a two-step tag extraction and embedding process consisting of the YAKE algorithm and MPNET. The 

proposed method achieves an accuracy of 3.4 % more precise than the current benchmarks, and therefore, 

the given method can potentially contribute to the development of tag-based categorization in Q&A 

platforms. 

Artyom Lobanov et al. [7] explored in the work which information source is more appropriate. 

Valuable for tag prediction. They contrast the present research to compare the existing approaches of each 

type of network on the same operational dataset and with the same set of tags. Then, they suggest an 

effective approach, such as an ensemble of the Gated Graph Neural Network model for a press release. At 

the same time, the model is used in this work to describe the Gated Graph Neural Network model for 

combining results and Bidirectional Encoder Representations used from the Transformers model for 

analyzing propositions. The proposed approach is better than that of earlier work. Proposed models by 

0:175 of the PR-AUC metric. 

Erjon Skenderi et al. [8] evaluated several text representation strategies for applying tag prediction 

in questions submitted in SO. They also discovered that Sentence-RoBERTa as a text representation method 

performs better than other text representation methods in successfully identifying the cases that fall in the 

total percentage of 17 or higher. This enhanced the prediction of tags for queries that do not contain code 

symbols. 

Avigit K. Saha et al. [9] gathered data from millions of questions on the Q&A site SO. Utilizing a 

discriminative model approach, the system autonomously suggests question tags to guide questioners in 

selecting pertinent tags for eliciting a response. 
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Smrithi Rekha V et al. [10] introduced a hybrid auto-tagging system for SO. This system comprises 

a programming language detection system and an SVM-based question classification system. Upon a user 

entering a question, the system will provide tag suggestions. 

Virik Jain and Jash Lodhavia [11] focus on developing an autonomous tagging system using 

machine learning (ML) methods such as K-Nearest Neighbor (KNN) and Random Forest (RF), along with 

important data preprocessing steps like stemming, tokenization, and removing stop words. The research 

dataset is obtained from kaggle.com, which provides a 10% SO question dataset. RF achieved an average 

accuracy of 70% across all the tags, while KNN performed slightly better with an accuracy of 75%. 

Jyotiska Nath Khasnabish et al. [12] introduced Bayesian learning models to accurately discern 

the programming language from a written source code. Utilizing 20000 source code files spanning 10 

programming languages, the Naive Bayes (NB), Bayesian Network, and Multinomial Naive Bayes 

classifier models are used to conduct a comprehensive performance comparison to determine classification 

accuracy on the test data. 

Eray Mert Kavuk and Ayse Tosun [13] proposed one-against-all models for the 15 most popular 

tags and a combined multi-tag classifier to identify the top K tags for a single post. Trained three algorithms 

to determine how well a post fits a specific tag. The probabilities of a post belonging to each tag are then 

combined to produce the results of the multi-tag classifier using the best-performing algorithm. Compared 

the performance of our multi-tag classifier with a baseline approach KNN and found that it achieves 55% 

recall and 39% F1 score. 

Taniya Saini and Sachin Tripathi [14] highlighted a system that efficiently gathers a substantial 

amount of data from a website and utilizes various methods to accurately predict tags for SO posts and 

achieve better accuracy for the 1000 most frequent tags. 

Srinivas Subramani et al. [15] proposed a tag prediction system compared to MLP and GRU. The 

system is evaluated based on test accuracy, hamming loss, subset accuracy, Jaccard score, precision, recall, 

and f1-score. 

Juan F. Baquero et al. [16] proposed a method that generates word embeddings representing each 

question term in a vector space. This allows for operations like comparing words, sentences, and questions. 

The method was tested on 18,000 questions related to 18 different programming languages. The results 

demonstrate that extracting valuable, non-obvious information from this highly unstructured data source is 

possible. 

Haoyu Wang et al. [17] evaluated SOTagRec on SO and compared it with state-of-the-art methods; 

the experimental results show that SOTagRec achieves 81.7% for Recall@5 and 88.7% for Recall@10, 

outperforming previous relevant methods. 

Taniya Saini and Sachin Tripathi developed [18] a system that can gather a large amount of data 

from a website and utilize this data to predict tags for SO posts from the 1000 used tags, aiming to improve 

accuracy. 

Purvi Prajapati et al. [19] focus on multi-label classification methods and evolutionary measures 

for multi-label classification. Conducted a comparative analysis of multi-label classification methods based 

on theoretical study and simulation of various datasets. 

This study used eight DL architectures to predict programming languages from SO queries, 

including LSTM, BiLSTM, MLP, CNN, FNN, GRU, RNN, and ANN. These models extract meaningful 

features from question data to enhance language identification and offer insights into software development. 

They provide diverse approaches for handling textual data in the context of computer languages. Some 

papers used a limited number of questions on different programming languages. Many papers could only 

provide an accuracy of 70-75 %. Our model used 15 tags with an excellent accuracy between 81-87%. Also, 

our study helps to choose which model is better for a specific language. The model that can give better 

accuracy in this field is also clarified. 

 

3. METHODOLOGY 

Here, a sequential, step-by-step demonstration of this experiment was conducted. The whole 

process shows how the experiment maintains a flow to identify the programming language from the tags. 



ISSN : 2715-9248  156 

 

JINITA  Vol. 6, No. 2, December 2024 

DOI: doi.org/10.35970/jinita.v6i2.2453 

 

   

 
Figure 1. Experimental Workflow 

 

In Figure 1, the flowchart describes how DL models predict tags. First, a random subset of the SO 

dataset was selected for this task. Then, HTML tags were removed; the raw data was divided into three 

sections: the title, the body, and a mixture of the two. To standardize the input, these stages were flowed: 

preprocessing the text, tokenization, and padding. The dataset was split into a training (80%) and testing 

(20%) set. Then, the processed data was fitted into various DL models for classification to predict the target 

tags. Finally, the best-performing model is identified by comparing and analyzing the output from these 

models. Further details are discussed in the Data Collection Procedure, Data Processing, and Result & 

Discussion. 

 

3.1.  Data Collection Procedure 

The dataset was collected from Kaggle. This dataset contains the questions and responses from the 

programming Q&A section of the SO website. Three files are coordinated for this. The questions file has 

the following information: title, body, creation date, closure date, score, and owner ID. For each question, 

the answers provide the owner ID, score, body, and creation date. The Inquiries table is rejoined by the 

ParentId section. The tags file includes the Tags and ID for each of these questions. More than two million 

pieces of data are in this dataset. There are 3 files, but the Question.csv and Tags.csv files were utilized. 

The question.csv file was added with the tag.csv file. There are 3750994 data in the tag.csv file and about 

1264216 data in the question.csv file. The most popular 15 programming language tags from the entire 

dataset to perform better.  Java, javascript, jQuery, MySQL, objective-c, PHP, Python, android, asp.net, 

C#, C++, CSS, HTML, iOS, and SQL are those classes. 
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3.2.  Data Processing 

An important first step in getting the dataset ready for ML model training is data preparation. The 

data is prepared for model training through preprocessing procedures. Before providing the input data (title, 

body) and target variable (tags) to the models for training, they needed to be suitably formatted and 

tokenized. The tag file and the question file were added using the ID column as a guide. Tokenization and 

padding of the question bodies and titles are part of the data preprocessing for this study. The raw text input 

is transformed into sequences of integers using the tokenizer class, where each separate word is given its 

integer index. Each SO question's title and body go through this process independently. The 

texts_to_sequences method is then applied to the training data to generate the sequences_train_title and 

sequences_train_body. Padding is applied to ensure reliable length using the sequence. the pad_sequences 

method. Then, the whole dataset was divided into training and testing datasets. The title, body, and 

concatenation of all eight models are trained using these processed sequences as inputs. 

 

3.3.  DL Algorithms 

The deep learning algorithm can train itself from errors, so it was suitable for identifying 

programming language from SO question tags. 

LSTM: LSTM networks use input, forget, output, and memory gates to capture long-term 

dependencies in sequential data. These gates regulate information flow, allowing LSTM to retain and 

update cell states across extended sequences. Applications include face recognition, handwriting 

recognition, and time series prediction, with potential real-world use in business, health, and transportation 

[20]. 

BILSTM: BILSTM process sequences in both forward and backward directions, capturing 

dependencies from past and future contexts. They combine forward and backwards hidden states to capture 

complete context information. BILSTM neural networks, or BILSTM, are employed in the paper's 

suggested attention-based short-term wind power prediction model [21]. 

MLP: MLPs are ANNs with multiple layers that study complex functions by joining linear 

transformations with non-linear activation functions. They also stack some entirely connected layers to 

model complex relationships between inputs and outputs. MLPs are an essential tool in DL theory because 

they improve performance with scale, which challenges the significance of inductive bias [22]. 

CNN: CNN is commonly used for processing grid data structures like images. They automatically 

learn spatial hierarchies of features and have proven effective in tasks such as text categorization and pattern 

recognition. Extensive analysis and testing confirm their suitability for text [23]. 

FNN: FNN is a type of neural network where node connections don't form a cycle. They process 

input data through successive layers without considering temporal dependencies. In previous years, some 

areas have shown a strong interest in FNN optimization by researchers and practitioners [24]. 

GRU: The GRU is a kind of RNN that uses update and reset gates to alleviate the disappearing 

gradient problems. It efficiently captures dependencies in sequential data. The update gate vector, reset gate 

vector, candidate activation, and final memory at time t are included in the update and reset gates formulas. 

The update gate vector is a sigmoid activation function, the reset gate vector is a weight matrix, and the 

candidate activation is a hyperbolic tangent activation function. The final memory at a time is the final 

hidden state at the time step. GRU selectively updates and resets the hidden state using the gates, thereby 

efficiently learning dependencies in sequential data [25]. 

RNN: RNN recognizes patterns in sequential data, maintaining hidden states to capture temporal 

dependencies. It also uses recurrent connections to maintain and update these hidden states across time 

steps, enabling the modelling of sequential data [26]. 

ANN: ANN is the foundational model of DL, consisting of interconnected neurons arranged in 

layers. They transform input data through multiple layers to produce a final output, using activation 

functions to introduce non-linearity. The output of the hidden layer neuron is represented by ℎ(h)j. The 

output is a weight matrix and bias term [27]. 

 

3.4.  Performance Metrics 

Accuracy: The accuracy of a classification model in making predictions over time is measured by 

comparing the total correct predictions to the sum of false negatives and true positives. However, accuracy 

may not be suitable for imbalanced datasets with unequal class representation. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (1) 

 

Recall: The recall of a classification model assesses a classifier's performance in class imbalances 

by giving an additional detailed assessment of how well it predicts positive examples. Model recognition 

is also assessed by the recall. 

 

  𝑅𝑒𝑐𝑎𝑙𝑙   =
 𝑇𝑃  

  𝑇𝑃+𝐹𝑁
 (2) 

 

Precision: The most important metrics for classification jobs are precision and recall, mainly when 

dealing with unbalanced datasets. Calculating the true positive rate, the ratio of true positives to false 

negative precision evaluates the accuracy of positive forecasts. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

 

F1-score: The main assessment statistic employed is the F1 score. This results from macro F1 

assigning an equal weight to each class. The F1 score can originate for a given class using the formula 

below. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑁+𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
 (4) 

 

 

4. RESULT & DISCUSSION 

The results, which show the accuracy, recall, and precision, as well as the F1 score, of various DL 

models, such as LSTM, BiLSTM, MLP, CNN, FNN, GRU, RNN, and ANN, explicate some of the ways 

in which the models can differ in conception. 

As seen in Table 1, the CNN and BiLSTM models are the overall best. For this dataset, which 

evaluated CNN model performance, the accuracy, recall, precision, and F1 scores were 87%. In the same 

way, the BiLSTM model performed 86% F1 score, the same result as CNN for accuracy and 87% for both 

recall and precision scores. Also, excellent results were obtained for both the MLP and ANN models; all 

of the metrics yielded 85% accuracy, which proves that both models have a high ability to train on patterns 

found in the dataset.  

On the other hand, LSTM was relatively lower than MLP and ANN but still reasonably well, 

scoring an average of 84% in all metrics. The FNN and GRU models are very similar. FNN has a slight 

decrease in the F1 score, which equals 82 %, while all the other indicators are around 83 %. The same can 

be said of the GRU model, where recall and accuracy are equal to 82%, and precision is 83 %. 

The RNN model reported the lowest overall results, with overall accuracy, recall, precision, and 

F1 around the 81-80% mark. This implies that compared to LSTM, BiLSTM, and CNN, with numerous 

hidden layers and more complex architecture, RNN may fail to manage elaborate data representations or 

perform long-term dependency tests for this dataset. 

BiLSTM and CNN showcased the highest accuracy, 87%, among all the prediction models. RNN 

displays poorer results than other prediction models. BiLSTM and CNN can be used to predict the 

programming language from SO. It will showcase excellent results in this field. Models like RNN, which 

has the lowest performance, may require modifications or may not be as well-suited for this specific task. 

Along with the accuracy, the recall, precision, and f1 score for various algorithms have been demonstrated 

in Table 1. 

 

Table 1. The Result of DL Models Prediction 
Model Accuracy Recall Precision F1 Score 

LSTM 84 84 84 84 

BILSTM 87 87 87 86 
MLP 85 85 85 85 

CNN 87 87 87 87 

FNN 83 83 83 82 
GRU 82 82 83 82 

RNN 81 81 81 80 
ANN 85 85 85 85 
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Figure 2. Demonstration Of Prediction Model Result 

 

Figure 2 displays the Accuracy, Precision, Recall, and F1 Score of the different models, with 

BiLSTM outperforming the others by a small margin. 
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Figure 3. Confusion Matrix of all Models 

 

Figure 3(a) considers strong diagonal elements in the ANN model, especially with the 

programming languages: “android”, “c#”, “java”, and “python”. A good classification accuracy is 

proposed. Nevertheless, there are some errors with classification, namely between “javascript” and “jquery” 

as well as “c#” and “c++”.  In Figure 3(b) BiLSTM model has low loss in the diagonal and a comparatively 

higher attentiveness on small correct predictions of more than two classes, including “android”, “C#”, 

“java”, and “python”. The more focused diagonal elements show that BiLSTM does slightly better than the 

other DL models in the least misclassification scenario. In Figure 3(c) CNN model also showed promising 

results in classes such as ‘android’, ‘c#’, ‘java’, and ‘python’, as highlighted by the diagonal cells in black, 

which indicate several correct classifications. Nevertheless, there are a few notable misclassifications: for 

instance, ‘javascript’ is confused with ‘jquery’, and ‘c++’ is confused with ‘c#’. Figure 3(d) showcases 

similar strong diagonal elements in the FNN Model, which implies a good performance for languages such 

as Java, Python, android, and c#.  Figure 3(e) considers the GRU matrix's results; the model behaves 

reasonably with some breakthroughs in such tags as ‘android’, ‘c++’, ‘java’, ‘python’, and ‘SQL’. Figure 

3(f) has quite similar high prediction values in” android”, “c++”, “java,” and “python” The LSTM model 

performs as well as the other one; however, the distribution of the prediction model is not the same as the 

GRU’s one.  In Figure 3(g), major classes such as “python”, “SQL”, and “java” were predicted to be good 

in the MLP model; a diagonally shaded value represented good prediction. However, there are some 

conflicts between languages like c++ and c# and between web languages like HTML and CSS. In Figure 

3(h), the accuracy of the RNN model is quite close to the MLP model in the classes like “python”, “SQL”, 

and “java”. This is confirmed by a high prediction score on the “android”, “java”, and “objective-c” 

diagonals. 
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5. CONCLUSION  

Programming languages are very important for conveying instructions to computers. The 

generation of programs and the formulation of algorithms are constantly developing to continue with 

technical developments [28]. The SO dataset contains noisy and irrelevant data from incomplete questions, 

poorly formatted text, and irrelevant information. This leads to information loss during preprocessing, 

reducing the effectiveness of models by missing critical contextual information or being influenced by 

irrelevant content. In this paper on categorizing programming languages by DL from SO questions CNN 

and BiLSTM were efficient, having 87% accuracy, recall, precision, and F1-measure. This was because of 

their suitability in identifying advanced patterns in textual data that proved ideal for this task. As for MLP 

and ANN also achieved 85% across all the metrics, although their more basic structure raised them just a 

little. LSTM was next in line with RNN, and GRU was slightly behind, where RNN recorded the lowest 

accuracy. These results have shown the improved performance of CNN and BiLSTM in language point 

prediction, and future work can refine both models to obtain better results. Our model fails to showcase a 

novel or hybrid system to predict the accuracy. The model is a detection model, not a prevention model. 

For further work, consider sophisticated model architectures and adjusting hyperparameters to 

enhance the precision of the prediction is our goal. Such models could be incorporated into a cloud-based 

application where the user posts questions and gets a solution as soon as possible. In addition, future 

research opportunities could stretch from SO prediction to automatic error prevention and self-healing 

applications. Such systems would look for call stacks analyzing their states in real-time to notice when 

memory has given in beforehand. Recording such faults that may include SOs was necessary since it could 

be used to make appropriate changes to the frequency of function calls depending on the memory resource 

available. These innovations would increase software reliability and minimize possible mistakes while 

going further than selection through simpler error correction relying solely on self-prediction. 
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