Analisis Sentimen Kinerja KPU Pemilu 2019 Menggunakan Algoritma K-Means Dengan Algoritma Confix Stripping Stemmer
Abstract
The performance of the KPU in the 2019 elections was a lively conversation between the general public and the political elite. Many people or parties commented on the process of calculating the results of the 2019 elections through social media. KPU's Facebook fan page is also busy being attacked by positive or negative comments. Sentiment analysis of public opinion can be investigated to find out how much percentage of a positive and negative sentiment of this policy through comments that have been sent to social-social media. Data analyzed were 200 data taken from Facebook KPU, divided into 150 training data and 50 test data. This study uses the K-Means algorithm with a value of k = 2 to determine the final sentiments of positive and negative, the Levenshtein Distance algorithm for word normalization and the Confix Stripping Stemmer algorithm in the stemming process. The results obtained from the public sentiment on the performance of the KPU are more negative than positive. The results of the accuracy obtained from the use of the K-Means algorithm are 84% with a lower accuracy value compared to the combination of the algorithm above, namely 86%. Suggestions for further research should use even more data and use the k-fold cross-validation accuracy calculation technique as a further trial
References
We Are Social, “Digital in 2019,” 2019, Tersedia : https://templatelab.com/global-digital-report/#page=248 [diakses 02 Januari 2020]
I. Buyung and A. Raharja, “Pengaruh Pensaklaran Video Otomatis (Video Automatic Switch Effect),” Teknol. Inf., vol. VIII, no. 23, pp. 57–74, 2013.
N. D. Mentari, M. A. Fauzi, and L. Muflikhah, “Analisis Sentimen Kurikulum 2013 Pada Sosial Media Twitter Menggunakan Metode K-Nearest Neighbor dan Feature Selection Query Expansion Ranking,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 8, pp. 2739–2743, 2018.
M. Ariful Furqon, D. Hermansyah, R. Sari, A. Sukma, Y. Akbar, and N. A. Rakhmawati, “Analisis sosial media pemerintah daerah di indonesia berdasarkan respons warganet,” pp. 2–4, 2018.
G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” Integer J. Maret, vol. 1, no. 1, pp. 32–41, 2017.
A. R. T. Lestari, R. S. Perdana, and M. A. Fauzi, “Analisis Sentimen Tentang Opini Pilkada Dki 2017 Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Näive Bayes dan Pembobotan Emoji,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 12, pp. 1718–1724, 2017.
Oktinas and Willa, “Analisis Sentimen Pada Acara Televisi Menggunakan Improved K-Nearest Neighbor,” pp. 5–30, 2017.
W. E. Nurjanah, R. S. Perdana, and M. A. Fauzi, “Analisis Sentimen Terhadap Tayangan Televisi Berdasarkan Opini Masyarakat pada Media Sosial Twitter menggunakan Metode K-Nearest Neighbor dan Pembobotan Jumlah Retweet,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 1, no. 12, pp. 1750–1757, 2017.
F. N. Hasan and M. Wahyudi, “Analisis Sentimen Artikel Berita Tokoh Sepak Bola Dunia Menggunakan Algoritma Support Vector Machine Dan Nakive Bayes Berbasis Particle Swarm Optimization,” Director, vol. 15, no. 2, pp. 2017–2019, 2018.
P. Antinasari, R. S. Perdana, and M. A. Fauzi, “Analisis Sentimen Tentang Opini Film Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Naive Bayes Dengan Perbaikan Kata Tidak Baku,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 12, pp. 1733–1741, 2017.
Budi, S. 'Text Mining Untuk Analisis Sentimen Review Film Menggunakan Algoritma K-Means, " Jurnal teknologi Informasi, Vol. 16, No. 1, p.1–8, 2017
Nuansa, E. P, "Analisis Sentimen Pengguna Twitter Terhadap Pemilihan Gubernur DKI Jakarta Dengan Metode Naïve Bayesian Classification Dan Support Vector Machine," 2017.
Sofiyanto, A., & Sw, "Perancangan Aplikasi Pertukaran Mata uang Asing Berbasis Android, " Teknokris, Vol.11, No.11, p. 50–57, 2017.
Syaifudin, Y. W., & Irawan, R. A. "Implementasi Analisis Clustering Dan Sentimen Data Twitter Pada Opini Wisata pantai Menggunakan K-Means, " JIP, Vol. 4, No. 3, p. 189–194, May 2018.
Somantri, O., Wiyono, S., & Dairoh, "Optimalisasi Support Vektor Machine (SVM ) Untuk Klasifikasi Tema Tugas Akhir Berbasis K-Means, " TELEMATIKA, Vol. 13, No. 02, Juli 2016, Pp. 59 – 68.
Haris, M., "Analisis Sentimen Komentar Masyarakat Terhadap Kebijakan Pemerintah Tentang Sistem Zonasi Sekolah Menggunakan Algoritma K-Means dan Algoritma Levenshtein Distance, " S.Kom. Skripsi, Teknik Informatika, FST, UIN Syarif Hidayatullah Jakarta, 2019
Kahfi, M., "Analisis Sentimen Komentar Kebijakan Full Day School (FDS) dari Facebook Page Kemendikbud RI Menggunakan Algoritma Naïve Bayes Classifier, " S.Kom. Skripsi, Teknik Informatika, FST, UIN Syarif Hidayatullah Jakarta, 2017
Jayanti, L., Sentinuwo, S. R., Lantang, O. A., & Jacobus, A., " Analisa Pola Penyalahgunaan Facebook Sebagai Alat Kejahatan Trafficking Menggunakan Data Mining ", Jurnal Teknik Informatika, Vol. 8, No 1, 2016.
Maulana, M. A., Setyanto, A., & Kurniawan, M. P., "Analisis Sentimen Media Sosial Universitas AMIKOM Yogyakarta Sebagai Sarana Penyebaran Informasi Menggunakan Algoritma Klasifikasi SVM," Semnasteknomedia Online, Vol. 6, No. 1, p.7–12, 2018.
Ariadi, D., & Fithriasari, K., "Klasifikasi Berita Indonesia Menggunakan Metode Naive Bayesian Classification dan Support Vector Machine dengan Confix Stripping Stemmer", JURNAL SAINS DAN SENI ITS Vol. 4, No.2, p. 248–253, 2015.
Adriani, M., Asian, J., Nazief, B., Williams, H. E., & Tahaghoghi, S. M. M. (2007). Stemming Indonesian: A confix-stripping approach. Conferences in Research and Practice in Information Technology Series, 38 (September 2018), 307–314.
Anam, C., & Santoso, H. B., "Perbandingan Kinerja Algoritma C4 . 5 dan Naive Bayes untuk Klasifikasi Penerima Beasiswa, " Energy Jurnal Ilmiah Ilmu-ilmu Teknik, Vol. 8, No. 1, p. 13–19, Mei 2018.
Rohmawati W, N., Defiyanti, S., & Jajuli, M., "Implementasi Algoritma K-Means Dalam Pengklasteran Mahasiswa Pelamar Beasiswa", JITTER Jurnal Ilmiah Teknologi Informasi Terapan, Vol. I, No. 2, p. 62–68, April 2015,
. Gunawan, F., Fauzi, M., & Adikara, P., "Analisis Sentimen Pada Ulasan Aplikasi Mobile Menggunakan Naive Bayes dan Normalisasi Kata Berbasis Levenshtein Distance (Studi Kasus Aplikasi BCA Mobile)," Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, Vol. 1, No. 10, 1082-1088, 2017.
Copyright (c) 2020 Journal of Innovation Information Technology and Application (JINITA)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).