A Classification Data Packets Using the Threshold Method for Detection of DDoS

  • Sukma Aji Universitas Muhammadiyah Sidoarjo
  • Davito Rasendriya Rizqullah Putra Universitas Muhammadiyah Sidoarjo
  • Imam Riadi Universitas Ahmad Dahlan
  • Abdul Fadlil Universitas Ahmad Dahlan
  • Muhammad Nur Faiz Politeknik Negeri Cilacap
  • Arif Wirawan Muhammad IT Telkom Purwokerto
  • Santi Purwaningrum Politeknik Negeri Cilacap
  • Laura Sari Politeknik Negeri Cilacap
Abstract views: 243 , PDF downloads: 188
Keywords: Ddos, Data Packages, Classifications, Threshold, Numeric Attribute

Abstract

Computer communication is done by first synchronizing one computer with another computer. This synchronization contains Data Packages which can be detrimental if done continuously, it will be categorized as an attack. This type of attack, when performed against a target by many computers, is called a distributed denial of service (DDoS) attack. Technology and the Internet are growing rapidly, so many DDoS attack applications result in these attacks still being a serious threat. This research aims to apply the Threshold method in detecting DDoS attacks. The Threshold method is used to process numeric attributes so obtained from the logfile in a computer network so that data packages can be classified into 2, namely normal access and attack access. Classification results using the Threshold method after going through the fitting process, namely detecting 8 IP Addresses as computer network users and 6 IP addresses as perpetrators of DDoS attacks with optimal accuracy.

Author Biographies

Sukma Aji, Universitas Muhammadiyah Sidoarjo

Program Studi Teknik Informatika

Arif Wirawan Muhammad, IT Telkom Purwokerto

Informatika

References

R. F. Fouladi, C. E. Kayatas, and E. Anarim, “Frequency Based DDoS Attack Detection Approach Using Naive Bayes Classification,” no. June, 2016.

Y. Bouzida et al., “Detecting and reacting against distributed denial of service attacks To cite this version : HAL Id : hal-01923665 Detecting and Reacting against Distributed Denial of Service Attacks,” 2018.

K. Kato and V. Klyuev, “An Intelligent DDoS Attack Detection System Using Packet Analysis and Support Vector Machine,” Int. J. Intell. Comput. Res., vol. 5, no. 3, pp. 464–471, 2014, doi: 10.20533/ijicr.2042.4655.2014.0060.

Paolo Passeri, “May 2023 Cyber Attacks Statistics,” Paolo Passeri, 2023. https://www.hackmageddon.com/2023/07/06/may-2023-cyber-attacks-statistics/ (accessed Dec. 15, 2023).

M. O. Schneider and J. Calmet, “Fibered Guard - A hybrid intelligent approach to denial of service prevention,” Proc. - Int. Conf. Comput. Intell. Model. Control Autom. CIMCA 2005 Int. Conf. Intell. Agents, Web Technol. Internet, vol. 1, pp. 121–127, 2005, doi: 10.1109/cimca.2005.1631252.

K. Elleithy and D. Blagovic, “Denial of Service Attack Techniques: Analysis, Implementation and Comparison,” J. Syst. …, vol. 3, no. 1, pp. 66–71, 2006, [Online]. Available: http://www.iiisci.org/Journal/CV$/sci/pdfs/P129065.pdf

M. Sazzadul Hoque, “An Implementation of Intrusion Detection System Using Genetic Algorithm,” Int. J. Netw. Secur. Its Appl., vol. 4, no. 2, pp. 109–120, 2012, doi: 10.5121/ijnsa.2012.4208.

F. H. Hsu, Y. L. Hwang, C. Y. Tsai, W. T. Cai, C. H. Lee, and K. W. Chang, “TRAP: A Three-way handshake server for TCP connection establishment,” Appl. Sci., vol. 6, no. 11, 2016, doi: 10.3390/app6110358.

M. Bogdanoski, T. Shuminoski, and A. Risteski, “Analysis of the SYN Flood DoS Attack,” Int. J. Comput. Netw. Inf. Secur., vol. 5, no. 8, pp. 15–11, 2013, doi: 10.5815/ijcnis.2013.08.01.

M. Merouane, “An approach for detecting and preventing DDoS attacks in campus,” Autom. Control Comput. Sci., vol. 51, no. 1, pp. 13–23, 2017, doi: 10.3103/S0146411616060043.

B. Nagpal, P. Sharma, N. Chauhan, and A. Panesar, “DDoS tools: Classification, analysis and comparison,” 2015 Int. Conf. Comput. Sustain. Glob. Dev. INDIACom 2015, no. February, pp. 342–346, 2015.

S. N and V. S, “Image Segmentation By Using Thresholding Techniques For Medical Images,” Comput. Sci. Eng. An Int. J., vol. 6, no. 1, pp. 1–13, 2016, doi: 10.5121/cseij.2016.6101.

N. L. P. T. Ristanti and R. Pradana, “Penggunaan Metode Threshold Dalam Pembuatan Sistem Pendeteksi Asap Dan Api Dengan Berbasis Firebase Dan Android Menggunakan Nodemcu Pada BJ House 77,” J. TICOM Technol. Inf. Commun. Vol., vol. 11, no. 1, pp. 44–49, 2022.

Z. binti mohd Safuan and M. azali bin zainal Abidin, “The Asian Journal of Professional and Business Studies,” Asian J. Prof. Bus. Stud., vol. 1, pp. 1–6, 2020.

M. Sezgin, “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imaging, vol. 13, no. January, pp. 146–165, 2004, doi: 10.1117/1.1631316.

A. Fadlil, I. Riadi, and S. Aji, “DDoS Attacks Classification using Numeric Attribute-based Gaussian Naive Bayes,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 8, pp. 42–50, 2017, doi: 10.14569/ijacsa.2017.080806.

PlumX Metrics

Published
2024-06-28