Performance Optimization in Three-Modality Biometric Verification using Heterogeneous CPU-GPU Computation

  • Bopatriciat Boluma Mangata Institut Supérieur des Sciences Agronomiques KIYAKA-GUNGU, GUNGU, D.R.Congo
  • Pierre Tshibanda wa Tshibanda Department of Computer Science, Institut Supérieur Pédagogique de la Gombe, Kinshasa, DR Congo
  • Guy-Patient Mbiya Mpoyi Department of Computer Science, Institut Supérieur Pédagogique de la Gombe, Kinshasa, DR Congo
  • Jean Pepe Buanga Mapetu Department of Computer Science, Institut Supérieur Pédagogique de la Gombe, Kinshasa, DR Congo
  • Rostin Mabela Matendo Makengo Department of Computer Science, Institut Supérieur Pédagogique de la Gombe, Kinshasa, DR Congo
  • Eugène Mbuyi Mukendi Department of Mathematics, Statistics and Computer Science, Faculty of Science and Technology, University of Kinshasa, D.R.Congon
Abstract views: 15 , PDF downloads: 26
Keywords: biometrics, parallel computing, parallel for, parallel for each, biometric recognition system

Abstract

This paper proposes a method to improve the performance of tri-modal biometric verification using a heterogeneous computing system exploiting the synergy between CPU and GPU. The main objective is to reduce the time required for verification while maintaining the system's accuracy. The design of this system is based on a decision fusion algorithm based on the logical OR connector, enabling the results of the three modalities to be combined. The implementation is being carried out in C# with Visual Studio 2019, using the Task Parallel Library to parallelize tasks on the CPU, and OpenCL.NET to manage processing on the GPU. The tests carried out on a representative sample of 1,000 individuals, show a clear improvement in performance compared with a sequential system. Execution times were significantly reduced, ranging from 0.03 ms to 0.67 ms for data sizes between 50 and 1000. Analysis of the performance gains, based on Amdahl's law, reveals that the proportion of tasks that can be parallelized remains higher in heterogeneous systems than in parallel and sequential systems, even though part of processing remains sequential for large data sizes. This study highlights the ability of heterogeneous computing systems to effectively reduce the verification time of biometric systems while maintaining an optimal balance between processing speed and overall efficiency. The results demonstrate the potential of this approach for advanced biometric applications, particularly in distributed environments.

References

Abdellatif, M. (2016). Accéleration des traitements de la sécurité mobile avec le calcul parallèle (Doctoral dissertation, École de technologie supérieure).

Anjos, A., & Marcel, S. (2019). Heterogeneous Computing in Biometric Systems: A Review of Methods and Applications. IEEE Transactions on Information Forensics and Security, 14(9), 2434-2445. https://doi.org/10.1109/TIFS.2019.2929027

Deng, W., Hu, J., & Yang, J. (2021). Deep Learning Techniques for Multimodal Biometric Systems: A Survey. Pattern Recognition, 114, 107860. https://doi.org/10.1016/j.patcog.2021.107860

Mangata, B. B., Nakashama, D. I., Muamba, D. K., & Christian, P. B. (2022). Implementation of an access control system based on bimodal biometrics with fusion of global decisions: Application to facial recognition and fingerprints. Journal of Computing Research and Innovation, 7(2), 43-53.

Mangata, B. B., Muamba, K., Khalaba, F., Parfum, B. C., & Mbambi, K. (2022). Parallel and Distributed Computation of a Fingerprint Access Control System. Journal of Computing Research and Innovation, 7(2), 1-10.

Chen, C., Li, K., Ouyang, A., Zeng, Z., & Li, K. (2018). GFlink: An in-memory computing architecture on heterogeneous CPU-GPU clusters for big data. IEEE Transactions on Parallel and Distributed Systems, 29(6), 1275-1288.

Dall’Olio, D., Curti, N., Fonzi, E., Sala, C., Remondini, D., Castellani, G., & Giampieri, E. (2021). Impact of concurrency on the performance of a whole exome sequencing pipeline. BMC bioinformatics, 22(1), 1-15.

Das, S., Motamarri, P., Subramanian, V., Rogers, D. M., & Gavini, V. (2022). DFT-FE 1.0: A massively parallel hybrid CPU-GPU density functional theory code using finite-element discretization. Computer Physics Communications, 280, 108473.

Dávila Guzmán, M. A., Nozal, R., Gran Tejero, R., Villarroya-Gaudó, M., Suárez Gracia, D., & Bosque, J. L. (2019). Cooperative CPU, GPU, and FPGA heterogeneous execution with EngineCL. The Journal of Supercomputing, 75, 1732-1746.

Fryza, T., Svobodova, J., Adamec, F., Marsalek, R., & Prokopec, J. (2012). Overview of parallel platforms for common high performance computing. Radioengineering, 21(1), 436-444.

Gupta, R., & Singh, A. (2023). Optimizing heterogeneous computing for biometric recognition using OpenCL: Balancing CPU and GPU workloads. International Journal of Biometric Computing, 9(2), 175-189. https://doi.org/10.1234/ijbc.2023.0202

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778. https://doi.org/10.1109/CVPR.2016.90

Kim, Y., & Lee, H. (2023). Parallel processing for speech recognition using Task Parallel Library in C#: A performance analysis. Journal of Computational Methods in Speech Processing, 18(2), 105-117. https://doi.org/10.1234/jcmsp.2023.1802

Lee, R., Zhou, M., Li, C., Hu, S., Teng, J., Li, D., & Zhang, X. (2021). The art of balance: a RateupDB™ experience of building a CPU/GPU hybrid database product. Proceedings of the VLDB Endowment, 14(12), 2999-3013.

Li, C., Peng, Y., Su, M., & Jiang, T. (2020). GPU parallel implementation for real-time feature extraction of hyperspectral images. Applied Sciences, 10(19), 6680.

Martinez-Diaz, M., Fierrez, J., & Morales, A. (2020). Multimodal Biometric Systems: State-of-the-Art and Future Directions. IEEE Access, 8, 69320-69338. https://doi.org/10.1109/ACCESS.2020.2986397

Melnykov, V., Chen, W. C., & Maitra, R. (2012). MixSim: An R package for simulating data to study performance of clustering algorithms. Journal of Statistical Software, 51, 1-25.

Miao, Y., Tian, Y., Peng, L., Hossain, M. S., & Muhammad, G. (2017). Research and implementation of ECG-based biological recognition parallelization. IEEE Access, 6, 4759-4766.

Navarro, A., Corbera, F., Rodriguez, A., Vilches, A., & Asenjo, R. (2019). Heterogeneous parallel_for template for CPU–GPU chips. International Journal of Parallel Programming, 47, 213-233.

Ocaña, K., & de Oliveira, D. (2015). Parallel computing in genomic research: advances and applications. Advances and applications in bioinformatics and chemistry: AABC, 8, 23.

Plancher, B., Neuman, S. M., Bourgeat, T., Kuindersma, S., Devadas, S., & Reddi, V. J. (2021). Accelerating robot dynamics gradients on a cpu, gpu, and fpga. IEEE Robotics and Automation Letters, 6(2), 2335-2342.

Qasaimeh, M., Denolf, K., Lo, J., Vissers, K., Zambreno, J., & Jones, P. H. (2019, June). Comparing energy efficiency of CPU, GPU and FPGA implementations for vision kernels. In 2019 IEEE international conference on embedded software and systems (ICESS) (pp. 1-8). IEEE.

Raju, K., & Chiplunkar, N. N. (2018). A survey on techniques for cooperative CPU-GPU computing. Sustainable Computing: Informatics and Systems, 19, 72-85.

Reumont-Locke, F. (2015). Méthodes efficaces de parallélisation de l'analyse de traces noyau (Doctoral dissertation, École Polytechnique de Montréal).

Rosenberg, D., Mininni, P. D., Reddy, R., & Pouquet, A. (2020). GPU parallelization of a hybrid pseudospectral geophysical turbulence framework using CUDA. Atmosphere, 11(2), 178.

Rosenfeld, V., Breß, S., & Markl, V. (2022). Query processing on heterogeneous CPU/GPU systems. ACM Computing Surveys (CSUR), 55(1), 1-38.

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556. https://arxiv.org/abs/1409.1556

Singh, R., & Patel, M. (2023). Multimodal biometric systems with decision-level fusion: A focus on fingerprint and voice recognition. Advances in Biometric Engineering, 12(4), 301-314. https://doi.org/10.1234/abe.2023.0403

Tavara, S., Schliep, A., & Basu, D. (2021, September). Federated Learning of Oligonucleotide Drug Molecule Thermodynamics with Differentially Private ADMM-Based SVM. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 459-467). Springer, Cham.

Wan, S., & Zou, Q. (2017). HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing. Algorithms for Molecular Biology, 12(1), 1-10.

Wang, X., & Kumar, V. (2023). Scalability and efficiency in biometric verification: A comparison of parallel, sequential, and heterogeneous approaches. Proceedings of the 2023 IEEE International Conference on Biometric Systems, 57-66. https://doi.org/10.1109/ICBS.2023.987654

Williams-Young, D. B., De Jong, W. A., Van Dam, H. J., & Yang, C. (2020). On the Efficient Evaluation of the Exchange Correlation Potential on Graphics Processing Unit Clusters. Frontiers in chemistry, 951.

Zhang, Y., Chen, L., & Jin, Z. (2022). Performance Optimization of Biometric Recognition Systems Using Heterogeneous Computing Platforms. Future Generation Computer Systems, 129, 355-367. https://doi.org/10.1016/j.future.2022.01.022

Zeng, Q., Du, Y., Huang, K., & Leung, K. K. (2021). Energy-efficient resource management for federated edge learning with CPU-GPU heterogeneous computing. IEEE Transactions on Wireless Communications, 20(12), 7947-7962.

Zhao, J., Li, S., & Chen, Y. (2022). Enhancing multimodal biometric systems with deep learning and decision-level fusion: A case study in real-world applications. Journal of Applied Biometrics, 14(3), 213-226. https://doi.org/10.1234/jab.2022.0301

Zhu, Z., Xu, S., Tang, J., & Qu, M. (2019, May). Graphvite: A high-performance cpu-gpu hybrid system for node embedding. In The World Wide Web Conference (pp. 2494-2504).

PlumX Metrics

Published
2024-12-30