An Intelligent System for Light and Air Conditioner Control Using YOLOv8

  • Ikharochman Tri Utomo Universitas Islam Indonesia
  • Muhammad Nauval Firdaus Universitas Islam Indonesia
  • Sisdarmanto Adinandra Universitas Islam Indonesia
  • Suatmi Murnani Universitas Islam Indonesia
Abstract views: 1 , PDF downloads: 2
Keywords: classroom, computer vision, energy consumption, occupancy detection, YOLO

Abstract

High energy consumption in classrooms is a significant concern, often resulting from inefficient lighting and air conditioning systems. Specifically, the problem lies in the lack of automated control mechanisms that adjust energy use based on real-time occupancy data. This study aims to develop and evaluate a system that employs a camera integrated with the YOLOv8 algorithm to detect human presence and optimize energy usage by controlling lights and air conditioning. The system's performance was assessed in three different classroom environments: two large and one small. The system's accuracy for occupancy detection varied from 13.64% to 100%, depending on lighting conditions and room size. Light control accuracy was highest in the classrooms with consistent lighting, reaching 99.77%. Air conditioning control achieved perfect accuracy of 100% in the classroom with a SHARP brand AC, with a maximum remote-control range of 7 meters. These findings indicate that the system's performance is influenced by lighting conditions and room size, with smaller rooms showing better results. The system demonstrates promising potential for reducing energy consumption in classroom settings, thereby contributing to more sustainable energy practices.

References

K. Sun, Q. Zhao, and J. Zou, “A review of building occupancy measurement systems,” Energy Build, vol. 216, p. 109965, Jun. 2020, doi: 10.1016/j.enbuild.2020.109965.

H. Prasodjo, “Green diplomacy as an effort by the Indonesian government in Realizing Net Zero Emission (NZE) in the year 2060,” in Environmental Issues and Social Inclusion in a Sustainable Era, Routledge, 2023, pp. 184–190.

“Enerlites MDC-50L Commercial Ultrasonic and Infrared Ceiling Sensor.” Accessed: Aug. 29, 2024. [Online]. Available: https://www.amazon.com/Enerlites-MDC-50L-Commercial-Ultrasonic-Infrared/dp/B00KWLNE0U/ref=sr_1_1?crid=16S5DX448XHH6&keywords=ENERLITES%2BMDC-50L&qid=1702355602&sprefix=%2Caps%2C397&sr=8-1&th=1

“TOPGREENER TSOS5-W In-Wall PIR Motion Sensor Light Switch,” 2024. Accessed: Aug. 29, 2024. [Online]. Available: https://www.amazon.com/TOPGREENER-TSOS5-White-Single-Pole-Fluorescent-Incandescent/dp/B015G8VLNA?th=1

A. Hanafie, R. Ramadhan, and others, “Perancangan Alat Pendeteksi Gerak Sebagai Sistem Keamanan Menggunakan ESP32 CAM Berbasis IoT,” Jurnal Teknologi dan Komputer (JTEK), vol. 2, no. 02, pp. 142–148, 2022.

D. Sayoga, P. D. Kusuma, and F. C. Hasibuan, “Pengembangan Sistem Deteksi Occupancy Menggunakan Computer Vision Untuk Smart Building Dan Automation,” eProceedings of Engineering, vol. 7, no. 2, 2020.

M. F. Wicaksono and M. D. Rahmatya, “Implementasi Arduino dan ESP32 CAM untuk smart home,” Jurnal Teknologi Dan Informasi, vol. 10, no. 1, pp. 40–51, 2020.

Y. Zhou, Y. Hua, and J. Liu, “Study workplace space occupancy: a review of measures and technologies,” Journal of Facilities Management, vol. 20, no. 3, pp. 350–368, May 2022, doi: 10.1108/JFM-01-2021-0013.

L. Wu, Y. Wang, and H. Liu, “Occupancy detection and localization by monitoring nonlinear energy flow of a shuttered passive infrared sensor,” IEEE Sens J, vol. 18, no. 21, pp. 8656–8666, 2018.

I. W. Suparno and A. Jalil, “Sensor Multi-Modal Untuk Deteksi Gerak Objek Pada Sistem Keamanan Rumah Berbasis Komunikasi Node Robot Operating System,” Electro Luceat, vol. 7, no. 1, pp. 39–47, 2021.

D. Desmira, D. Aribowo, W. D. Nugroho, and S. Sutarti, “Penerapan Sensor Passive Infrared (PIR) Pada Pintu Otomatis di PT LG Electronic Indonesia,” PROSISKO: Jurnal Pengembangan Riset dan Observasi Sistem Komputer, vol. 7, no. 1, 2020.

L. Wu and Y. Wang, “A Low-Power Electric-Mechanical Driving Approach for True Occupancy Detection Using a Shuttered Passive Infrared Sensor,” IEEE Sens J, vol. 19, no. 1, pp. 47–57, Jan. 2019, doi: 10.1109/JSEN.2018.2875659.

L. Wu, F. Gou, S.-T. Wu, and Y. Wang, “SLEEPIR: Synchronized Low-Energy Electronically Chopped PIR Sensor for True Presence Detection,” IEEE Sens Lett, vol. 4, no. 3, pp. 1–4, Mar. 2020, doi: 10.1109/LSENS.2020.2976801.

L. Wu and Y. Wang, “Performance Optimization of the SLEEPIR Sensor Towards Indoor Stationary Occupancy Detection,” IEEE Sens J, vol. 21, no. 21, pp. 23776–23786, Nov. 2021, doi: 10.1109/JSEN.2021.3111877.

J. Andrews, M. Kowsika, A. Vakil, and J. Li, “A Motion Induced Passive Infrared (PIR) Sensor for Stationary Human Occupancy Detection,” in 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), IEEE, Apr. 2020, pp. 1295–1304. doi: 10.1109/PLANS46316.2020.9109909.

O. Shih and A. Rowe, “Occupancy estimation using ultrasonic chirps,” in Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, 2015, pp. 149–158.

A. H. Nadyawan, “APLIKASI SENSOR ULTRASONIC HC-SR04 PADA ROBOT ANTI PENGHALANG,” SinarFe7, vol. 4, no. 1, pp. 306–312, 2021.

A. B. Amjoud and M. Amrouch, “Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review,” IEEE Access, vol. 11, pp. 35479–35516, 2023, doi: 10.1109/ACCESS.2023.3266093.

N. Manakitsa, G. S. Maraslidis, L. Moysis, and G. F. Fragulis, “A Review of Machine Learning and Deep Learning for Object Detection, Semantic Segmentation, and Human Action Recognition in Machine and Robotic Vision,” Technologies (Basel), vol. 12, no. 2, p. 15, Jan. 2024, doi: 10.3390/technologies12020015.

T. Diwan, G. Anirudh, and J. V Tembhurne, “Object detection using YOLO: Challenges, architectural successors, datasets and applications,” Multimed Tools Appl, vol. 82, no. 6, pp. 9243–9275, 2023.

H. Lou et al., “DC-YOLOv8: small-size object detection algorithm based on camera sensor,” Electronics (Basel), vol. 12, no. 10, p. 2323, 2023.

Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects,” IEEE Trans Neural Netw Learn Syst, vol. 33, no. 12, pp. 6999–7019, Dec. 2022, doi: 10.1109/TNNLS.2021.3084827.

A. H. Pratomo, W. Kaswidjanti, and S. Mu’arifah, “Implementasi algoritma region of interest (ROI) untuk meningkatkan performa algoritma deteksi dan klasifikasi kendaraan,” J. Teknol. Inf. dan Ilmu Komput, vol. 7, no. 1, pp. 155–162, 2020.

H. N. Huynh, A. T. Tran, and T. N. Tran, “Region-of-Interest Optimization for Deep-Learning-Based Breast Cancer Detection in Mammograms,” Applied Sciences, vol. 13, no. 12, p. 6894, Jun. 2023, doi: 10.3390/app13126894.

C. J. Hong and M. H. Mazlan, “Development of Automated People Counting System using Object Detection and Tracking.,” International Journal of Online & Biomedical Engineering, vol. 19, no. 6, 2023.

PlumX Metrics

Published
2024-12-30