Pengaruh Variasi Media Pendingin Proses Quenching Terhadap Mikrostruktur dan Sifat Mekanik Baja Hadfield
Abstract
Manganese steel contains 1,2% C and 12% Mn generally recognized as Hadfield steel. Based on the high composition of C and Mn elements, the main structure of this steel is dominated by an austenite matrix that surrounded the carbide phase on the grain boundary. This structure is usually brittle which leads to improper high-loading conditions. To overcome this problem, the experimental method was carried out by heating Hadfield steel to a temperature of 1000 oC, then followed by a quenching process using cooling media variations namely water and salt bath (20 wt.% NaCl solution). These cooling media variations aim to determine the level of carbide formation which affects the microstructure and mechanical properties. From the test results, it was obtained that Hadfield steel with salt bath (20 wt.% NaCl) quenching variation has significant microstructure transformation which affects enhancement of the value of tensile and yield strength (809,5 and 542,4 MPa), hardness (238 HV), ductility and toughness.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).