Unjuk Kerja Pengembangan Prototype Alat Pengering Padi Metode Thin Layer
Abstract
Based on data from the Central Statistics Agency (BPS) for 2019, Cilacap Regency has an area of 14,000 hectares of rice farming land with a potential for harvesting up to 920,000 tons of rice, then the Binangun District area has 66.5 hectares of rice farming land with a potential of harvesting up to 32,000 tons of rice. Turning paddy into rice requires many processes, one of which is drying rice. Traditional rice drying takes a relatively long time, has an uneven moisture content, and is under an unstable temperature therefore it is necessary to develop a thin-layer method for drying rice. This study used the Rex C100 Thermocontrol as a drying temperature controller, used an Arduino Uno equipped with a BTS 7960 driver to adjust the stirring speed, and a YL-69 sensor to read the rice moisture content. Tests in this study were carried out using Inpari-32 rice with a mass of 2 Kg and a drying temperature of 50-80oC. The result of this study was that the relationship between temperature and time in drying was inversely proportional. The rice drying process uses the highest drying power of 654.5 watts while the lowest power is 467.5 watts. The lowest overall energy use was 2.05 x106 J and the highest energy was 2.60 x106 J. The highest drying rate was 0.50%bk/minute. Effective drying uses a temperature of 80oC with a time of 30 minutes to reach the store-dry rice and 70 minutes to reach the dry milled rice category.
References
R. A. A. Tama, Mardalius, “Analisis Faktor Prioritas Pemilihan Benih Padi Unggul,” J-SISKO TECH, vol.2 no.2, 2019.
Badan Pusat Statistik, Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi 2018-2019, Jakarta: Badan Pusat Statistik, 2020.
Y. Hakimah, “Analisis Kebutuhan Energi Listrik Dan Prediksi Penambahan Pembangkit Listrik Di Sumatera Selatan, “Jurnal Desiminasi Teknologi, vol. 7, no 2, Juli 2019.
A. Trisnawan, H. Wahyudi, and Syahminan, “Klasifikasi Beras Menggunakan Metode K-Means Clustering Berbasis Pengolahan Citra Digital,” Jurnal Terapan Sains dan Teknologi. vol.1 no.1, 2016.
Fahroji. H, “Kinerja Beberapa Tipe Moisture Meter dalam Penentuan Kadar Air Padi,” Jurnal Lahan Suboptimal, vol.5 no.61, pp 62-70, 2016.
N. Lucio, N. I Gusti, and H. Y. Raka, “Pengaruh Penundaan Waktu Prosesing Terhadap Mutu Benih Padi (Oryza satival.) Varietas Membramo,” Agroekoteknologi, vol.6 no.3, 2017.
Y. Djamalu, “Analisa Mesin Pengering Padi Dengan Pemanas Surya Kolektor”. Politeknik Gorontalo. vol.1, hal. 7-14, 2012.
M. Afrizal Abdi, et al. "Penerapan Pompa Air Terintegrasi Photovoltaic Untuk Pertanian Dan Kemandirian Energi Desa." Jurnal Berdaya Mandiri 3.1 (2021): 493-501.
L. S. Juwita, “Uji Performansi Alat Pengering Gabah Tipe Dmp-1 dengan Penambahan Batu Alor Hitam pada Ruang Kolektor dan Ruang Pengering Sebagai Penyimpan Panas,” Jurnal Keteknikan Pertanian Tropis dan Biosistem, vol.5 no.3 pp.257-264, 2017.
T. I. A. Hidayat, Rancang Bangun Prototype Pengering Padi Otomatis Berbasis Mikrokontroler AT89S52, ISBN, 2016.
S. S. Ratna, A. E. Mahrus, and Winarto, “Pengeringan Lapis Tipis (Thin Layer Drying/Tld) Ikan Teri Berbasis Tenaga Surya,” vol.22 no.3, pp.110-113, 2016.
T. Panggabaian, N. T. Arjuna, and H. Ari, “Kinerja Pengeringan Gabah Menggunakan Alat Pengering Tipe Rak dengan Energi Surya, Biomassa, dan Kombinasi,” Teknik Pertanian. Universitas Sriwijaya. vol.37. hal 229-235, 2017.
Badan Standarisasi Nasional, Gabah, Standar Mutu, Jakarta: Badan Standarisasi Nasional, 1987.
Thermo Controller Rex C100. Manual Book.
S. Yunus, A. Muhammad, C. P. Yayu, A. Fitri, “Rancang Bangun Alat Pengering Gabah Sistim Rotary Dryer Dengan Bahan Bakar Sekam Padi,” 2019.
A. D. Satriya, “Perancangan Metode Pemanas Pada Rancang Bangun Mesin Pengaduk Bahan Baku Sabun Mandi Cair,” Fakultas Teknik. Universitas Negeri Surabaya. vol.1. hal 52-57, 2014.
M. Azhar, “Implementasi Kebijakan Energi Baru dan Energi Terbarukan Dalam Rangka Ketahanan Energi Nasional,” vol.1 no.4, pp. 398-412, 2018.
Husdi, “Monitoring Kelembaban Tanah Pertanian Menggunakan Soil Moisture Sensor Fc-28 Dan Arduino Uno,” ILKOM, vol. 10 no. 2, 2018.
H. Kim and L. Sunhee, “Electrical heating properties of various electro-circuit patterns coated on cotton fabric using graphene/polymer composites,” pp. 1-17, 2019.
M. H. Fahmi, “Analisis Kebutuhan Capacitor Bank Beserta Implementasinya Untuk Memperbaiki Faktor Daya Listrik Di Politeknik Kota Malang,” ELTEK, vol.12 no.1, 2014.
U. Ilmi, “Studi Persamaan Regresi Linear Untuk Penyelesaian Persoalan Daya Listrik,” Jurnal Teknika, vol.11 no.1, 2019.
I. H. Safril, “Rancang Bangun Sistem Monitoring Daya Listrik Pada Kamar Kos Berbasis Internet of Things (Iot),” vol.8 no.1, pp. 91-99, 2019.
M. K. Rihi, J. B. V. T. Muhamad, and U. K. M. Erick, “Pengaruh Kecepatan Angin Blower dan Jumlah Pipa Pemanas terhadap Laju Pengeringan pada Alat Pengering Padi Tipe Bed Dryer Berbahan Bakar Sekam Padi,” LJTMU: vol. 03, no. 02 pp.31-36, 2016.
Copyright (c) 2023 Afrizal Abdi Musyafiq, Riyani Prima Dewi, Purwiyanto Purwiyanto, Rafiq Subarkah
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).