Analisis Porositas, Tekstur, dan Morfologi Karbon Tempurung Nipah Hasil Pirolisis Suhu Tinggi Untuk Anoda Baterai Sekunder

  • Theresia Evila Purwanti Sri Rahayu Politeknik Negeri Cilacap
  • Mohammad Nurhilal Politeknik Negeri Cilacap
  • Rosita Dwityaningsih Politeknik Negeri Cilacap
Abstract views: 258 , PDF downloads: 481
Keywords: hard carbon, battery, SEM, iodine number

Abstract

Lithium-ion batteries are the recent main store of electrochemical energy that have been widely used for electronic equipment, electric vehicles, and also renewable energy storage such as wind and solar. Lithium-ion batteries have many electrochemical advantages but lithium availability in nature is reduced very quickly and its distribution is uneven throughout the world. Sodium is attractive as an alternative to lithium insertion for secondary batteries because of its abundant availability and oxidation reduction potential to standard hydrogen electrodes only 0.3 volts higher than lithium. This study aims to synthesize hard carbon from nipah shell biomass using thermal methods of low-temperature pyrolysis (lower than 200 oC) followed by high-temperature pyrolysis (higher than 1000 oC). Characterization is carried out by iodine number analysis to determine porosity and SEM-EDX to determine texture and morphology. The result of the analysis of carbon iodine number is 346.86 mg/g while SEM-EDX analysis showed that carbon has a structure similar to a combination of graphene and nano-tube carbon.

Author Biographies

Theresia Evila Purwanti Sri Rahayu, Politeknik Negeri Cilacap

Teknik Pengendalian Pencemaran Lingkungan

Mohammad Nurhilal, Politeknik Negeri Cilacap

Teknik Mesin

Rosita Dwityaningsih, Politeknik Negeri Cilacap

Teknik Pengendalian Pencemaran Lingkungan

References

H. Cheng, J. G. Shapter, Y. Li, and G. Gao, “Recent progress of advanced anode materials of lithium-ion batteries,” J. Energy Chem., vol. 57, pp. 451–468, 2021, doi: 10.1016/j.jechem.2020.08.056.

N. Kularatna, “Rechargeable batteries and their management: Part 30 in a series of tutorials on instrumentation and measurement,” IEEE Instrum. Meas. Mag., vol. 14, no. 2, pp. 20–33, 2011, doi: 10.1109/MIM.2011.5735252.

G. E. Blomgren, “The Development and Future of Lithium Ion Batteries,” J. Electrochem. Soc., 2017, doi: 10.1149/2.0251701jes.

M. Thompson, Q. Xia, Z. Hu, and X. S. Zhao, “A review on biomass-derived hard carbon materials for sodium-ion batteries,” Mater. Adv., vol. 2, no. 18, pp. 5881–5905, 2021, doi: 10.1039/d1ma00315a.

V. Simone, A. Boulineau, A. de Geyer, D. Rouchon, L. Simonin, and S. Martinet, “Hard carbon derived from cellulose as anode for sodium ion batteries: Dependence of electrochemical properties on structure,” J. Energy Chem., vol. 25, no. 5, pp. 761–768, 2016, doi: 10.1016/j.jechem.2016.04.016.

P. Roy and S. K. Srivastava, “Nanostructured anode materials for lithium ion batteries,” J. Mater. Chem. A, vol. 3, no. 6, pp. 2454–2484, 2015, doi: 10.1039/c4ta04980b.

Poulomi Roy and Suneel Kumar Srivastava, “Nanostructured Anode Materials for Lithium Ion Batteries,” J. Mater. Chem. A, pp. 1–27, 2014, doi: 10.1039/C4TA04980B.

J. G. C. V.-G. and C. M. Ghimbeu, “Recent Progress in Design of Biomass-Derived Hard Carbons for Sodium Ion Batteries,” J. Carbon Res., 2016, doi: 10.3390/c2040024.

G. E. Blomgren, “The Development and Future of Lithium Ion Batteries,” J. Electrochem. Soc., vol. 164, no. 1, pp. 5019–5025, 2017, doi: 10.1149/2.0251701jes.

J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations,” Beilstein J. Nanotechnol., vol. 9, no. 1, pp. 1050–1074, 2018, doi: 10.3762/bjnano.9.98.

N. M. Nurazzi et al., “Nanotube-Reinforced Polymer Composite : An Overview,” Polymers (Basel)., vol. 13, no. 7, p. 1047, 2021.

A. G. Olabi, M. A. Abdelkareem, T. Wilberforce, and E. T. Sayed, “Application of graphene in energy storage device – A review,” Renew. Sustain. Energy Rev., vol. 135, no. September 2020, p. 110026, 2021, doi: 10.1016/j.rser.2020.110026.

Z. Sun, S. Fang, and Y. H. Hu, “3D Graphene Materials: From Understanding to Design and Synthesis Control,” Chem. Rev., vol. 120, no. 18, pp. 10336–10453, 2020, doi: 10.1021/acs.chemrev.0c00083.

“Nanoparticles,” 2022. https://www.nagwa.com/en/explainers/640142370207/ (accessed Dec. 02, 2022).

C. A. Nunes and M. C. Guerreiro, “Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers,” Quim. Nova, vol. 34, no. 3, pp. 472–476, 2011, doi: 10.1590/S0100-40422011000300020.

L. Shrestha, M. Thapa, R. Shrestha, S. Maji, R. Pradhananga, and K. Ariga, “Rice Husk-Derived High Surface Area Nanoporous Carbon Materials with Excellent Iodine and Methylene Blue Adsorption Properties,” C, vol. 5, no. 1, p. 10, 2019, doi: 10.3390/c5010010.

S. P. Thimmappa, “Potassium Iodate: A New Versatile Reagent to Determine the Iodine Value of Edible Oils,” Lett. Appl. NanoBioScience, vol. 11, no. 2, pp. 3537–3541, 2021, doi: 10.33263/lianbs112.35373541.

L. L. Sutter and D. P. Bentz, Assessing ash quality and performance. Elsevier Ltd., 2017.

and V. O. O. A. Ekpete, A. C. Marcus, “Preparation and Characterization of Activated Carbon Obtained from Plantain (Musa paradisiaca) Fruit Stem,” J. Chem., 2017, doi: https://doi.org/10.1155/2017/8635615.

Y. Z. Li Zhou, Ming Li, Yan Sun, “Effect of moisture in microporous activated carbon on the adsorption of methane,” Carbon N. Y., vol. 39, pp. 771–785, 2001, doi: 10.1016/S0008-6223(01)00025-2.

C. Saka, “BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2,” J. Anal. Appl. Pyrolysis, vol. 95, pp. 21–24, 2012, doi: 10.1016/j.jaap.2011.12.020.

G. Mansoureh and V. Parisa, Synthesis of metal nanoparticles using laser ablation technique. Elsevier Inc., 2018.

M. Gniadek and A. Dąbrowska, “The marine nano- and microplastics characterisation by SEM-EDX: The potential of the method in comparison with various physical and chemical approaches,” Mar. Pollut. Bull., vol. 148, no. May, pp. 210–216, 2019, doi: 10.1016/j.marpolbul.2019.07.067.

A. M. Idris and A. A. El-Zahhar, “Indicative properties measurements by SEM, SEM-EDX and XRD for initial homogeneity tests of new certified reference materials,” Microchem. J., vol. 146, no. 2018, pp. 429–433, 2019, doi: 10.1016/j.microc.2019.01.032.

M. Goyal et al., “Isopentyltriphenylphosphonium bromideionic liquid as a newly effective corrosion inhibitor on metal-electrolyte interface in acidic medium: Experimental, surface morphological (SEM-EDX & AFM) and computational analysis,” J. Mol. Liq., vol. 316, p. 113838, 2020, doi: 10.1016/j.molliq.2020.113838.

T. J. Mays, “A new classification of pore sizes,” Stud. Surf. Sci. Catal., vol. 160, no. 0, pp. 57–62, 2007, doi: 10.1016/s0167-2991(07)80009-7.

A. Venkataraman, E. V. Amadi, Y. Chen, and C. Papadopoulos, “Carbon Nanotube Assembly and Integration for Applications,” Nanoscale Res. Lett., vol. 14, no. 1, 2019, doi: 10.1186/s11671-019-3046-3.

PlumX Metrics

Published
2023-01-26