Karakteristik Struktur Kristal In2Se3 Hasil Preparasi Dengan Metode Bridgman

  • Ulikaryani Ulikaryani Politeknik Negeri Cilacap
  • Jenal Sodikin Politeknik Negeri Cilacap
  • Nur Akhlis Sarihidaya Laksana Politeknik Negeri Cilacap
  • Unggul Satria Jati Politeknik Negeri Cilacap
  • Ari Kristiningsih Politeknik Negeri Cilacap
Abstract views: 215 , PDF downloads: 290
Keywords: solar cell, bridgman technique, crystal structure, In2Se3

Abstract

Apart from using silicon material, thin-layer solar cells can be made from various types of semiconductor materials, such as a combination of groups III and VI. In solar cell applications, these materials are usually used as n-type coatings. This study not only aimed to determine the crystal structure and the effect of annealing temperature on the crystal lattice parameters but also to determine the chemical composition and surface morphological structure of the crystals formed from the preparation. The crystal growth process was carried out using the Bridgman method with different heating patterns. The temperature in both annealing temperatures is 200oC and 250oC. The physical properties of the prepared In2Se3 crystals were characterized using XRD, SEM, and EDAX. XRD Characterization was used to determine the crystal structure, while SEM and EDAX characterization was used to determine the surface morphology and chemical composition of the crystals. The result of the XRD characterization showed that the formed In2Se3 crystals were polycrystals with a hexagonal structure. Based on the diffractogram obtained, the In2Se3 crystalline heating 1 has better quality. EDAX analysis showed that the In2Se3 crystals were composed of elements of In and Se with a mole ratio of 2:9, while the SEM characterization showed that the color of the surface morphology of the In2Se3 crystals was not homogeneous.

References

C. I. Cahyadi et al., “Efisiensi Recharger Baterai Pada Pembangkit Listrik Tenaga Surya,” Edu Elektr. J., vol. 9, no. 2, pp. 61–65, 2020.

I. M. Dharmadasa, Advances in Thin-Film Solar Cells. New York: PAN-STANDFORD PUBLISHING, 2012. doi: 10.1201/b13060.

M. Taraba, J. Adamec, M. Danko, P. Drgona, and T. Urica, “Properties measurement of the thin film solar panels under adverse weather conditions,” Transp. Res. Procedia, vol. 40, pp. 535–540, 2019, doi: 10.1016/j.trpro.2019.07.077.

W. Hidayat and R. Sadiana, “Catu daya sel surya serba guna (portable) untuk telepon genggam,” J. Energi Dan Manufaktur, vol. 10, no. 1, p. 44, 2018.

S. T.S and K. C.R, “New Materials for Thin Film Solar Cells,” Coatings Thin-Film Technol., 2019, doi: 10.5772/intechopen.81393.

R. S et al., “Optoelectronic properties of In2S3 thin films measured using surface photovoltage spectroscopy,” Mater. Res. Express, vol. 6, no. 7, 2019, doi: 10.1088/2053-1591/ab143b.

A. M. Alsaad, A. A. Ahmad, I. A. Qattan, Q. M. Al-Bataineh, and Z. Albataineh, “Structural, optoelectrical, linear, and nonlinear optical characterizations of dip-synthesized undoped zno and group iii elements (B, al, ga, and in)-doped zno thin films,” Crystals, vol. 10, no. 4, 2020, doi: 10.3390/cryst10040252.

M. Kiani, E. Parsyanpour, and F. Samavat, “An investigation of the techniques and advantages of crystal growth,” Int. J. Thin Film Sci. Technol., vol. 9, no. 1, pp. 27–30, 2020, doi: 10.18576/ijtfst/090104.

L. Zhao, S. Song, and L. Li, “Effect of sputtering gas pressure on the performance of WO3 thin films electrochromic device,” J. Phys. Conf. Ser., vol. 1676, no. 1, 2020, doi: 10.1088/1742-6596/1676/1/012037.

K. Seevakan and S. Bharanidharan, “Different Types of Crystal Growth Methods,” Int. J. Pure Appl. Math., vol. Vol 119, no. 12, pp. 5743–5758, 2018.

R. Widayati, “Struktur Kristal Dan Morfologi Permukaan Bahan Semikonduktor Cd(S0,5 Te0,5) Hasil Preparasi Dengan Metode Bridgman Pada Berbagai Variasi Alur Pemanasan,” J. Pendidik. Mat. dan Sains, vol. 2, pp. 261–266, 2011.

X. He et al., “Bridgman growth and characterization of a HoCa4O(BO3)3crystal,” CrystEngComm, vol. 23, no. 27, pp. 4833–4839, 2021, doi: 10.1039/d1ce00270h.

H. Guo, K. Song, Z. Li, S. Fan, and Z. Xu, “5″diameter PIN-PMN-PT crystal growth by the Bridgman method,” J. Adv. Dielectr., vol. 10, no. 3, pp. 5–8, 2020, doi: 10.1142/S2010135X20500010.

M. Setianingrum and Ariswan, “Studi Tentang Struktur Dan Komposisi Kimia Lapisan Tipis Sn(S0.6Te0.4) Hasil Preparasi Dengan Teknik Evaporasi Vakum Untuk Aplikasi Sel Surya,” J. Fis., vol. 06, no. 02, pp. 115–121, 2017.

S. Khoirunisa and Ariswan, “Struktur Dan Komposisi Kimia Bahan Semikonduktor Evaporasi Vakum Structure And Chemical Compotition Of Semiconductor Mateerial Sn ( S 0 , 8 Te 0 , 2 ) Thin Film Preparation Result By Vacum Evaporation Tecniques,” J. Fis., vol. 6, no. 3, pp. 173–183, 2017.

N. Rettiningtyas and F. U. Ermawati, “SINTESIS DAN FABRIKASI KERAMIK (Mg0,8Zn0,2)TiO3 + 2 wt% Bi2O3 SEBAGAI BAHAN DIELEKTRIK SERTA KARAKTERISASI STRUKTUR DAN DENSITASNYA AKIBAT VARIASI WAKTU TAHAN SINTER,” Inov. Fis. Indones., vol. 9, no. 2, pp. 25–33, 2020, doi: 10.26740/ifi.v9n2.p25-33.

Y. N. Palyanov, Y. M. Borzdov, I. N. Kupriyanov, Y. V. Bataleva, and D. V. Nechaev, “Effect of Oxygen on Diamond Crystallization in Metal-Carbon Systems,” ACS Omega, vol. 5, no. 29, pp. 18376–18383, 2020, doi: 10.1021/acsomega.0c02130.

Y. D. Yolanda and A. B. D. Nandiyanto, “How to Read and Calculate Diameter Size from Electron Microscopy Images,” ASEAN J. Sci. Eng. Educ., vol. 2, no. 1, pp. 11–36, 2021, doi: 10.17509/ajsee.v2i1.35203.

E. Gil-González et al., “Crystallization Kinetics of Nanocrystalline Materials by Combined X-ray Diffraction and Differential Scanning Calorimetry Experiments,” Cryst. Growth Des., vol. 18, no. 5, pp. 3107–3116, 2018, doi: 10.1021/acs.cgd.8b00241.

PlumX Metrics

Published
2023-01-29