Desain Pembangkit Listrik Tenaga Surya Bifacial: Pendekatan Sudut Inklinasi

  • Haogqea Dhiyah Ayu Institut Teknologi Sumatera
  • Rishal Asri Institut Teknologi Sumatera
  • Putty Yunesti Institut Teknologi Sumatera
Abstract views: 373 , PDF downloads: 240
Keywords: bifacial, inclination, shading, solar power plant

Abstract

In this era, energy demand is increasing along with population growth and technological development. Energy is a basic need, and its availability is decreasing, necessitating renewable energy sources like solar energy. However, the current use of solar Photovoltaic (PV) relies only on one side. In this study, the bifacial method is used in solar power plants (PLTS) to reduce conventional energy consumption by identifying the relationship between the tilt angle and internal shading that affects the performance of bifacial photovoltaics. The PLTS system is designed with inclination angles of 8, 15, and 20 to minimize shading and maximize efficiency. PVsyst simulation results show that an 8 angle produces 22868 kWh/year, a 15 angle produces 22724 kWh/year, and a 20 angle produces 22464 kWh/year. Shading affects energy production, but the 8 angle has the lowest power reduction. Choosing the right inclination angle can improve PLTS efficiency and performance.

References

N. Aryanto, A. Jaya, and C. Hudaya, “Pemodelan Energi Baru Terbarukan (EBT) Melalui Pendekatan Dinamis Untuk Ketahanan Energi Kabupaten Sumbawa 2017–2027,” Jurnal Tambora Vol. 4 No. 2a Juli 2020, Pp. 123–132,2020.

Kementrian Keuangan Republik Indonesia, “Bauran Energi baru terbarukan Ditargetkan 23 Persen di 2025,” Kementrian Keuangan Republik Indonesia.

Kementerian Energi dan Sumber Daya Mineral, “Potensi Energi Baru Terbarukan (EBT) Indonesia,” Kementerian Energi Dan Sumber Daya Mineral.

O. Kılcı and M. Koklu, “Bifacial and Monofacial Photovoltaic Module with Tracker System Analysis,” Journal of Amasya University The Institute of Science and Technology (JAUIST) 2020.

A. A. Widayat, S. Ma’arif, K. D. Syahindra, A. F. Fauzi, and E. Adhi Setiawan, “Comparison and Optimization of Floating Bifacial and Monofacial Solar PV System in a Tropical Region,” in 2020 9th International Conference on Power Science and Engineering, ICPSE 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 66–70. doi: 10.1109/ICPSE51196.2020.9354374.

X. Sun, M. R. Khan, C. Deline, and M. A. Alam, “Optimization and performance of bifacial solar modules: A global perspective,” Appl Energy, vol. 212, pp. 1601–1610, Feb. 2018, doi: 10.1016/j.apenergy.2017.12.041.

“Bifacial PV System A Technological and Financial Comparison Betwen Bifacial and Standard PV Panels,” UPSALA Universitet, Juni 2018

M. Alam, M. S. Gul, and T. Muneer, “Performance analysis and comparison between bifacial and monofacial solar photovoltaic at various ground albedo conditions,” Renewable Energy Focus , vol. 44, pp. 295–316, Mar. 2023, doi: 10.1016/j.ref.2023.01.005.

M. Prasad and R. Prasad, “Bifacial vs monofacial grid-connected solar photovoltaic for small islands: A case study of Fiji,” Renew Energy, vol. 203, pp. 686–702, Feb. 2023, doi: 10.1016/j.renene.2022.12.068.

G. Raina and S. Sinha, “A simulation study to evaluate and compare monofacial Vs bifacial PERC PV cells and the effect of albedo on bifacial performance,” in Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 5242–5247. doi: 10.1016/j.matpr.2020.08.632.

A. Abotaleb and A. Abdallah, “Performance of bifacial-silicon heterojunction modules under desert environment,” Renew Energy, vol. 127, pp. 94–101, Nov. 2018, doi: 10.1016/j.renene.2018.04.050.

G. Bakti Muntoha, D. Septi Nur Afifah, D. Hayuhantika, M. Pendidikan Matematika, and U. J. Bhinneka PGRI Mayor Sujadi Timur No, “Potensi Pantai Sine Kabupaten Tulungagung Sebagai Pembangkit Listrik Tenaga Surya (PLTS) The Potential of Sine Beach Tulungagung Regency as a Solar Power Plant,” 2023.

L. Solar, “Spesifikasi Bifacial Hi-MO-5-LR-5-72-HBD-535-555-M-35-30-and-15-G2-V16-413169f990,” Longi.

M. F. Zambak, S. Surianto, and A. Faisal, “Kajian Efektifitas Daya Pada Pembangkit Listrik Tenaga Angin Dengan Pembangkit Listrik Tenaga Surya,” Jurnal Teknologi Elektro, vol. 13, no. 3, p. 155, Oct. 2022, doi: 10.22441/jte.2022.v13i3.005.

E. Prasetyono, R. Wigas Wicaksana, N. A. Windarko, and M. Z. Efendi, “Pemodelan Dan Prediksi Daya Ouput Photovoltaic Secara Real Time Berbasis Mikrokontroler,” 2015.

Huawei, “Efficiency Curve Circuit Diagram Smart PV Controller.” Huawei, 2020.

P. Menteri, E. Dan, and S. Daya Mineral, “Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 2 Tahun 2024 Tentang Pembangkit Listrik Tenaga Surya Atap yang Terhubung Pada Jaringan Tenaga Listrik Pemegang Izin Usaha Penyediaan Tenaga Listrik Untuk Kepentingan Umum.”

D. Fuaddin, A. Daud, M. E. Program, S. T. Pembangkit, and T. Listrik, “Rancangan Sistem Pembangkit Listrik Tenaga Surya On-Grid Kapasitas 20 kWp untuk Residensial,” vol. 10, 2020.

A. Shrivastava, R. Sharma, M. Kumar Saxena, V. Shanmugasundaram, M. Lal Rinawa, and Ankit, “Solar energy capacity assessment and performance evaluation of a standalone PV system using PVSYST,” Mater Today Proc, vol. 80, pp. 3385–3392, Jan. 2023, doi: 10.1016/j.matpr.2021.07.258.

L. Asdiyan Salsabila Ayu, I. Ayu Dwi Giriantari, I. Nyoman Setiawan, J. Raya Kampus Unud Jimbaran, K. Kuta Sel, and K. Badung, “Analisis Unjuk Kerja Pembangkit Listrik Tenaga Surya (Plts) Atap On-Grid 11,2 Kwp Di Residensial Bukit Gading Mediterania, Jakarta Utara,” 2023.

PlumX Metrics

Published
2024-07-31