Komparasi Model Prediksi Kurs Pada Masa Pandemi Covid-19 Menggunakan Neural Network Berbasis Genetic Algorithm dan Particle Swarm Optimization
Abstract
Data from Bank Indonesia shows that the rupiah exchange rate against dollar weakened at the beginning of the Covid-19 pandemic. This exchange rate volatility is an important problem in the Indonesian economy. Therefore, the prediction model for the exchange rate against the dollar is needed during the Covid-19 pandemic to predict the exchange rate during the Covid-19 Pandemic. This study is proposed to compare the prediction of the rupiah exchange rate against the dollar using the GA-based Neural Network algorithm and the PSO-based Neural Network algorithm. Initially the data was collected in the period 2019 to 2021, then the data is preprocessed. Validation used the k-fold validation technique with a ratio of 70:30, while the evaluation is carried out with the output of RMSE. The results showed that the performance of PSO and GA was the same, namely 0.020 +/- 0.006.
References
I.SimorangkirandSuseno,SistemdanKebijakanNilaiTukar,SeriKeban.,no.12.Jakarta:PusatPendidikandanStudiKebanksentralan(PPSK)BankBI,2004.[2]L.Shu,K.Shi,andH.Ye,“Exchangeratevolatilityandtrade:Theroleofcreditconstraints,”Rev.Econ.Dyn.,vol.30,no.April,pp.203–222,2018.[3]J.Caballero,C.Candelaria,andG.Hael,“Banklinkagesandinternationaltrade,”J.Int.Econ.,vol.115,pp.30–47,2018.[4]K.Kallahi-KaraiandP.Safari,“FutureexchangeratesandSiegel’sparadox,”Glob.Financ.J.,vol.37,pp.168–172,2018.[5]K.Lee,“Systematicexchangeratevariation:Wheredoesthedollarfactorcomefrom?,”Int.Rev.Econ.Financ.,vol.56,pp.288–307,2017.[6]C.-V.DemianandF.DiMauro,“Theexchangerate,asymmetricshocksandasymmetricdistributions,”Int.Econ.,vol.154,pp.68–85,2017.[7]S.S.Devi,“PengaruhInflasidanNilaiTukar/KursTerhadapIndeksHargaSahamGabungan(IHSG)yangTerdaftardiBursaEfekIndonesia(BEI)PadaMasaPandemiCovid-19BulanJanuari-Desember2020,”J.Inov.Mhs.Manaj.,vol.1,no.2,pp.139–149,2021.[8]C.PandaandV.Narasimhan,“Forecastingexchangeratebetterwithartificialneuralnetwork,”J.PolicyModel.,vol.29,no.2,pp.227–236,2006.[9]T.N.Pandey,A.Jagadev,S.Dehuri,andS.B.Cho,“Anovelcommitteemachineandreviewsofneuralnetworkandstatisticalmodelsforcurrencyexchangerateprediction:Anexperimentalanalysis,”J.KingSaudUniv.-Comput.Inf.Sci.,2018.[10]S.Mamadli,“Analysisofchaosandnonlinearitiesinaforeignexchangemarket,”inProcediaComputerScience,2017,vol.120,pp.901–907.[11]H.G.KeefeandH.Shadmanicor,“Foreignexchangemarketinterventionandasymmetricpreferences,”Emerg.Mark.Rev.,p.#pagerange#,2018.[12]F.Shen,J.Chao,andJ.Zhao,“Forecastingexchangerateusingdeepbeliefnetworksandconjugategradientmethod,”Neurocomputing,vol.167,pp.243–253,2015.[13]H.ThinyaneandJ.Millin,“AnInvestigationintotheUseofIntelligentSystemsforCurrencyTrading,”Comput.Econ.,vol.37,no.4,pp.363–374,2011.[14]T.Y.E.Nababan,B.Warsito,andA.Rusgiyono,“PemodelanWaveletNeuralNetworkuntukPrediksiNilaiTukarRupiahTerhadapDolarAS,”J.Gaussian,vol.9,pp.217–226,2020.[15]I.D.G.Budiastawa,I.Santiyasa,andC.R.A.Pramartha,“PrediksiDanAkurasiNilaiTukarMataUangRupiahTerhadapUSDolarMenggunakanRadialBasisFunctionNeuralNetwork,”J.IlmuElektron.IlmuKomput.Udayana,vol.7,no.4,2019.[16]A.H.Moghaddam,M.H.Moghaddam,andM.Esfandyari,“Stockmarketindexpredictionusingartificialneuralnetwork,”J.Econ.Financ.Adm.Sci.,vol.21,no.41,pp.89–93,2016.[17]N.Nikentari,H.Kurniawan,N.Ritha,andD.Kurniawan,“OptimasiJaringanSyarafTiruanBackpropagationDenganParticleSwarmOptimizationUntukPrediksiPasangSurutAirLaut,”J.Teknol.Inf.danIlmuKomput.,vol.5,no.5,2018.[18]P.ArsiandJ.Prayogi,“OptimasiPrediksiNilaiTukarRupiahTerhadapDolarMenggunakanNeuralNetworkBerbasiskanAlgoritmaGenetika,”J.Inform.BSI,vol.7,no.1,pp.8–14,2020.[19]E.VeriantoandS.B.D.Oetomo,“ArtificialNeuralNetworkModelwithPSOasaLearningMethodtoPredictMovementoftheRupiahExchangeRateagainsttheUSDollar,”Int.J.ofAppliedInf.Technol.,vol.04,no.02,pp.0–2,2021.[20]S.A.Wicaksono,“OptimasiSistemPenempatanMagangMenerapkanAlgoritmeGenetika,”J.Teknol.Inf.danIlmuKomput.,vol.6,no.1,2019.[21]RidwansyahandE.Purwaningsih,“ParticleSwarmOptimizationuntukMeningkatkanAkurasiPrediksiPemasaranBank,”PilarNusaMandiri,vol.14,no.1,pp.83–88,2018.[22]N.F.Istighfarin,“PenerapanMetodeParticleSwarmOptimization(PSO)DanGeneticAlgorithm(Ga)PadaSistemOptimasiVisibleLightCommunication(VLC)UntukMenentukanPosisiRobot,”J.SIMETRIS,vol.11,no.1,pp.279–286,2020.[23]M.Nabipour,P.Nayyeri,H.Jabani,S.S,andA.Mosavi,“PredictingStockMarketTrendsUsingMachineLearningandDeepLearningAlgorithmsViaContinuousandBinaryData;aComparativeAnalysis,”inIEEEAccess,2020,pp.150199–150212.
Copyright (c) 2022 Infotekmesin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).