Rancang Bangun Rangka dan Penggerak Mesin FDM Berbasis Arduino Tipe XZ-Head

  • Radhi Ariawan Department of Mechanical Engineering State Polytechnic Cilacap https://orcid.org/0000-0002-5567-7161
  • Nur Akhlis Sarihidaya Laksana Politeknik Negeri Cilacap
  • Unggul Satria Jati Politeknik Negeri Cilacap
  • Roy Aries Permana Tarigan Politeknik Negeri Cilacap
Abstract views: 229 , PDF downloads: 296
Keywords: FDM, XZ head, motor stepper, lead screw

Abstract

FDM is an AM method that is currently being developed due to the flexibility of the object geometry that can be formed. This study aims to design the frame and drive of the XZ Head type FDM engine. Stress simulation was carried out to determine the safety factor in the frameXZ design. Lead screw parameters in the form of torque, shear stress, axial stress, and critical load were calculated to determine the torque requirement of the driving motor. The value of the linear axis of the stepper motor was calibrated to determine the dimensions of the printed output. Based on the simulation, the dynamic and static stresses on the XZ frame were 1.9 MPa and 2 MPa. The yield strength was 55 MPa with a safety factor of 28. The results of the calculation of the lead screw torque (TR) and (TL) were 18.27 N.mm and 6.60 N.mm. The calculated nominal shear stress of the screw () was 0.43 N/mm2, the axial loading stress () was -0.62 N/mm2, and the critical load (Wcr) was 9986.41 N. The difference in dimensions of the measurement results in the X and Z planes was 0.22 and 0.17 mm larger than the target dimensions of 20 mm.

References

M. K. Thompson et al., “Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints,” CIRP Ann. - Manuf. Technol., vol. 65, no. 2, pp. 737–760, 2016, doi: 10.1016/j.cirp.2016.05.004.

I. J. Solomon, P. Sevvel, and J. Gunasekaran, “A review on the various processing parameters in FDM,” Mater. Today Proc., vol. 37, no. Part 2, pp. 509–514, 2020, doi: 10.1016/j.matpr.2020.05.484.

Y. A. Jin, H. Li, Y. He, and J. Z. Fu, “Quantitative analysis of surface profile in fused deposition modelling,” Addit. Manuf., vol. 8, pp. 142–148, 2015, doi: 10.1016/j.addma.2015.10.001.

P. Tran, T. D. Ngo, A. Ghazlan, and D. Hui, “Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings,” Compos. Part B Eng., vol. 108, pp. 210–223, 2017, doi: 10.1016/j.compositesb.2016.09.083.

R. Melnikova, A. Ehrmann, and K. Finsterbusch, “3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials,” IOP Conf. Ser. Mater. Sci. Eng., vol. 62, no. 1, 2014, doi: 10.1088/1757-899X/62/1/012018.

F. M. de Oliveira, E. I. de Melo, and R. A. B. da Silva, “3D Pen: A low-cost and portable tool for manufacture of 3D-printed sensors,” Sensors Actuators, B Chem., vol. 321, no. June, p. 128528, 2020, doi: 10.1016/j.snb.2020.128528.

L. Carolo, “3D Printer Axis: THe Basics Simply Explained,” All3DP.com, 2022. https://all3dp.com/2/3d-printer-axis-the-basics-simply-explained/ (accessed Oct. 02, 2022).

F. Setyoadi, Yuris; Hermana, Rifki; Mulyanto Dwi, “Performance Analysis of The 3D Printer Corexy FDM Type With Area X=200 Y=200 Z=200 mm,” J. Tek. Mesin Mech. Xplore, vol. 3, no. 1, pp. 26–33, 2022, [Online]. Available: https://journal.ubpkarawang.ac.id/index.php/JTMMX.

D. Andriyansyah, “Perancangan Dan Pembuatan Mesin DESIGN AND ASSEMBLY CANTILEVER 3D PRINTER MACHINE,” J. ABDI MASYA, vol. 1, no. 2, pp. 108–114, 2021.

M. Dahlan, B. Gunawan, and F. S. Hilyana, “Rancang Bangun Printer 3D Menggunakan Kontroller Arduino Mega 2560,” Pros. SNATIF Ke-4, pp. 105–110, 2017, [Online]. Available: http://jurnal.umk.ac.id/index.php/SNA/article/view/1250.

J. Jeffrey, D. W. Utama, and G. Soeharsono, “Rancang Bangun Kontruksi Dan Sistem Gerak Sumbu Pada Mesin Fused Deposition Modelling,” Poros, vol. 14, no. 2, pp. 99–106, 2016.

M. D. Muliyawan, “Rancang Bangun Konstruksi Rangka Mesin 3D Printer Tipe Cartesian Berbasis Fused Deposition Modeling (Fdm),” J. Tek. Mesin, vol. 6, no. 4, p. 252, 2017, doi: 10.22441/jtm.v6i4.2075.

Krishnanand, S. Soni, and M. Taufik, “Design and assembly of fused filament fabrication (FFF) 3D printers,” Mater. Today Proc., vol. 46, no. xxxx, pp. 5233–5241, 2020, doi: 10.1016/j.matpr.2020.08.627.

R. A. Wicaksono, E. Kurniawan, M. K. Syafrianto, R. F. Suratman, and M. R. Sofyandi, “Rancang Bangun dan Simulasi 3D Printer Model Cartesian Berbasis Fused Deposition Modelling,” J. Engine Energi, Manufaktur, dan Mater., vol. 5, no. 2, p. 53, 2021, doi: 10.30588/jeemm.v5i2.895.

R. C. Juvinall and K. M. Marshek, Fundamental Of Machine Component design, 7th ed. Hoboken: John Wiley & Sons, Inc., 2020.

J. E. Shigley, R. G. Budynas, and J. K. Nisbett, Shigley ’ s Mechanical Engineering Design, 11th ed. New York: Mc Graw-Hill, 2020.

PlumX Metrics

Published
2023-01-29