Klasifikasi Stunting Balita menggunakan Metode Ensemble Learning dan Random Forest
Abstract
Stunting is a long-term condition that describes nutritional deficiencies that affect children's growth and development from an early age, especially linear growth. Examination of the stunting status of toddlers in Indonesia, especially at the Karanganyar Community Health Center, still uses book calculations so errors are still found in the use of formulas which result in inaccuracies in the classification of stunting. Efforts to improve research results were carried out using the Random Forest algorithm which was enhanced with ensemble methods such as the Bagging and Boosting methods to classify stunting data. The aim of this research is to find out which technique will produce the best and most accurate accuracy. The Ensemble Boosting techniques used are XGBoost and Gradient Boosting. This research uses a dataset from the Karanganyar Health Center, Semarang City with a total of 2000 data records. The test results produced the highest accuracy algorithm, namely the Random Forest + Bagging algorithm which obtained accuracy results of 98.25%. Based on the analysis results obtained, the Bagging and Boosting methods can accurately predict stunting data.
References
N. Wayan Dian Ekayanthi, P. Suryani, P. Studi Kebidanan, P. Kesehatan Kemenkes Bandung, P. Studi Promosi Kesehatan, and P. Kesehatan Kemenkes Malang, “Edukasi Gizi pada Ibu Hamil Mencegah Stunting pada Kelas Ibu Hamil,” Online, 2019. [Online]. Available: http://ejurnal.poltekkes-tjk.ac.id/index.php/JK
A. D. Laksono and I. Kusrini, “Gambaran Prevalensi Balita Stunting dan Faktor yang Berkaitan di Indonesia: Analisis Lanjut Profil Kesehatan Indonesia Tahun 2017”, doi: 10.13140/RG.2.2.35448.70401.
A. Nadila, ¶‚½í, and N. Herdiani, “Literature Review: Pola Pemberian Makan dengan Kejadian Stunting pada Balita,” |14 JURNAL KESEHATAN, vol. 16, no. 1, 2023, doi: 10.32763/juke.
F. Wajidi and D. N. Nur, “Sistem Pakar Diagnosis Penyakit Stunting pada Balita menggunakan Metode Forward Chaining,” vol. 6, no. 2, pp. 401–407, 2021, doi: 10.32493/informatika.v6i2.11938.
R. Yunita Rahmaniar, “Analisis Faktor-Faktor yang Berhubungan dengan Kejadian Stunting di Dinas kesehatan Kabupaten Lahat Tahun 2021,” Jurnal Kesehatan Saelmakers PERDANA, vol. 5, no. 2, pp. 435–446, Aug. 2022, doi: 10.32524/jksp.v5i2.701.
S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature selection Backward Elimination,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 49, Jan. 2022, doi: 10.30865/mib.v6i1.3312.
M. Y. Titimeidara and W. Hadikurniawati, “Monica Yoshe Titimeidara Implementasi Metode Naive Bayes Implementasi Metode Naive Bayes Classifier Untuk Klasifikasi Status Gizi Stunting Pada Balita,” 2021.
A. Nugroho and Y. Religia, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 3, pp. 504–510, Jun. 2021, doi: 10.29207/resti.v5i3.3067.
A. Husaini, I. Hoeronis, H. H. Lumana, and L. D. Puspareni, “Early Detection of Stunting in Toddlers Based on Ensemble Machine learning in Purbaratu Tasikmalaya,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 11, no. 3, p. 487, Jul. 2023, doi: 10.26418/justin.v11i3.66465.
Fadellia Azzahra, N. Suarna, and Y. Arie Wijaya, “Penerapan Algoritma Random Forest Dan Cross Validation Untuk Prediksi Data Stunting,” Kopertip : Jurnal Ilmiah Manajemen Informatika dan Komputer, vol. 8, no. 1, pp. 1–6, Feb. 2024, doi: 10.32485/kopertip.v8i1.238.
A. R. Arrahimi, M. K. Ihsan, D. Kartini, M. R. Faisal, and F. Indriani, “Teknik Bagging Dan Boosting Pada Algoritma CART Untuk Klasifikasi Masa Studi Mahasiswa,” Jurnal Sains dan Informatika, vol. 5, no. 1, pp. 21–30, Jul. 2019, doi: 10.34128/jsi.v5i1.171.
A. Hot Iman, F. Ready Permana, G. Putro Wardana, R. Kemmy Rachmansyah, and M. Mega Santoni, “Perbandingan Algoritma Klasifikasi Random Forest dan Extreme Gradient Boosting pada Dataset Cuaca Provinsi DKI Jakarta Tahun 2018,” 2022, [Online]. Available: https://katalog.data.go.id/dataset/data-prakiraan-cuaca-wilayah-provinsi-dki-jakarta-tahun-2018.
L. Maretva Cendani and A. Wibowo, “Perbandingan Metode Ensemble Learning pada Klasifikasi Penyakit Diabetes,” 2022.
S. Yulianto, J. Prasetyo, ) Yansen, B. Christianto, ) Kristoko, and D. Hartomo, “Analisis Data Citra Landsat 8 OLI Sebagai Indeks Prediksi Kekeringan Menggunakan Machine learning di Wilayah Kabupaten Boyolali dan Purworejo 1)*,” 2019.
P. Studi Informatika, F. Matematika dan Ilmu Pengetahuan Alam, J. Raya Kampus Udayana, B. Jimbaran, K. Selatan, and B. Indonesia, “Implementasi Random Forest dengan LASSO Dalam Klasifikasi Penyakit yang Ditularkan Melalui Nyamuk Kadek Dwitya Adhi Pradyto a1 , Made Agung Raharja a2.” [Online]. Available: https://www.kaggle.com/datasets/richardbernat/vector-borne-disease-
I. Kemala and A. W. Wijayanto, “Perbandingan Kinerja Metode Bagging dan Non-Ensemble Machine learning pada Klasifikasi Wilayah di Indonesia menurut Indeks Pembangunan Manusia,” Jurnal Sistem dan Teknologi Informasi (Justin), vol. 9, no. 2, p. 269, Apr. 2021, doi: 10.26418/justin.v9i2.44166.
I. M. Syahrani, “ANALISIS PEMBANDINGAN TEKNIK ENSEMBLE SECARA BOOSTING(XGBOOST) DAN BAGGING (RANDOMFOREST) PADA KLASIFIKASI KATEGORI SAMBATAN SEKUENS DNA,” Jurnal Penelitian Pos dan Informatika, vol. 9, no. 1, p. 27, Oct. 2019, doi: 10.17933/jppi.2019.090103.
E. H. Yulianti, O. Soesanto, and Y. Sukmawaty, “Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit,” JOMTA Journal of Mathematics: Theory and Applications, vol. 4, no. 1, 2022.
K. Li et al., “Efficient Gradient Boosting for prognostic biomarker discovery,” Bioinformatics, vol. 38, no. 6, pp. 1631–1638, Mar. 2022, doi: 10.1093/bioinformatics/btab869.
S. Elsa Suryana and B. Warsito, “PENERAPAN GRADIENT BOOSTING DENGAN HYPEROPT UNTUK MEMPREDIKSI KEBERHASILAN TELEMARKETING BANK,” 2021, vol. 10, pp. 617–623, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
Copyright (c) 2024 Selma Marsya Finda, Danang Wahyu Utomo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).