Komparasi Model Analisis Sentimen Pada Twitter Terhadap Kemahalan Minyak Goreng dengan Metode Naive Bayes dan Support Vector Machine

  • Moh. Aminullah Al Fachri Institut Teknologi Telkom Purwokerto
  • Ummi Athiyah (Scopus ID : 57225085286), Institut Teknologi Telkom Purwokerto
Abstract views: 169 , PDF downloads: 192
Keywords: machine learning;, naive bayes;, text mining;, SVM;, twitter;

Abstract

At the end of 2021, people are shocked by the drastically reduced supply of cooking oil and high prices. This makes people talk about it a lot through social media like Twitter. Freedom on Twitter raises many responses from the public. The number of negative and positive responses on Twitter makes comparisons between the two responses difficult to observe. This study aims to determine the comparison of positive responses and negative responses. Machine learning with the naïve Bayes method and support vector machine is able to overcome this problem. The research conducted examines how the comparison between positive responses and negative responses and which method has higher accuracy. The data used is 10,000 Indonesian language tweets. Model testing was carried out with 1839 test data. the Naive Bayes method gets an accuracy of 74.06% with the results of predicting two positive tweets and 1837 negative tweets. The SVM method was tested on linear, polynomial, RBF, and sigmoid kernels. The kernel with the highest accuracy value is the sigmoid kernel with an accuracy of 81.8% with the predicted results of 266 positive tweets and 1573 negative tweets.

 

References

H. N. Muhammad, F. Nikmah, N. U. Hidayah, and A. K. Haqiqi, “Arang Aktif Kayu Leucaena Leucocephala sebagai Adsorben Minyak Goreng Bekas Pakai (Minyak Jelantah),” Phys. Educ. Res. J., vol. 2, no. 2, p. 123, Aug. 2020, doi: 10.21580/perj.2020.2.2.6176.

T. Kurniasih, G. A. Utama, and S. R. Rahmad, Distribusi Perdagangan Komoditas Minyak Goreng Indonesia 2021. Jakarta, 2021.

J. Sipayung, “Pengaruh Persepsi Kelangkaan dan Antisipasi Penyesalan Terhadap Urgensi untuk Membeli, Perilaku Penimbunan dan Penyembunyian dalam Toko dengan Daya Saing dan Motivasi Belanja Hedonis Sebagai Variabel Moderasi (Studi pada Store UNIQLO & H&M),” ATMA JAYA YOGYAKARTA, 2020.

R. Fajar, S. Program, P. Rekayasa, N. Lunak, and R. Bengkalis, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” vol. 3, no. 1, pp. 50–59, 2018.

S. Azza Amira, S. Utama, and D. Muhammad Hanif Fahmi, “Penerapan Metode Support Vector Machine untuk Analisis Sentimen pada Review Pelanggan Hotel,” Edu Komputika, vol. 7, no. 2, pp. 40–48, 2020.

E. Indrayuni, “Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes,” J. KHATULISTIWA Inform., vol. VII, no. 1, pp. 29–36, 2019.

T. Krisdiyanto, “Analisis Sentimen Opini Masyarakat Indonesia Terhadap Kebijakan PPKM pada Media Sosial Twitter Menggunakan Naïve Bayes Clasifiers,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 7, no. 1, p. 32, 2021, doi: 10.24014/coreit.v7i1.12945.

R. Mahendrajaya, G. A. Buntoro, and M. B. Setyawan, “Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based dan Support Vector Machine,” Komputek, vol. 3, no. 2, p. 52, 2019, doi: 10.24269/jkt.v3i2.270.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” J. MEDIA Inform. BUDIDARMA, vol. 4, no. 3, p. 650, Jul. 2020, doi: 10.30865/mib.v4i3.2181.

M. Akbar S, “Perbandingan Algoritme Naïve Bayes Classifier Dan K-Nearest Neighbors Pada Prediksi Pergerakan Mata Uang Dollar Amerika (Usd) Terhadap Harga Emas,” Universitas Islam Indonesia Yogyakarta, 2020.

W. C. Widyaningtyas, S. Al Faraby, and Adiwijaya, “Klasifikasi Sentiment Analysis pada Review Film Berbahasa Inggris dengan Menggunakan Metode Doc2Vec dan Support Vector Machine ( SVM ) Sentiment Analysis Classification of Movie Review in English Language using Doc2Vec and Support Vector Machine ( SVM ),” e-Proceeding Eng., vol. 5, no. 1, pp. 1570–1578, 2018.

A. S. Ritonga and E. S. Purwaningsih, “Penerapan Metode Support Vector Machine (SVM) dalam Klasifikasi Kualitas Pengelasan SMAW (Shield Metal Arc Welding),” J. Ilm. Edutic, vol. 5, no. 1, pp. 17–25, 2018.

R. G. Rafsanjani, N. Hidayat, and R. K. Dewi, “Diagnosis Penyakit Hati Menggunakan Metode Naive Bayes Dan Certainty Factor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4478–4482, 2018.

N. T. Putri, I. D. Wijaya, and A. T. H. Retno, “Analisis Sentimen Opini Masyarakat Terhadap Pembangunan Infrastruktur Kota Malang Melalui Twiter Dengan Menggunakan Metode Support Vector Machine,” Semin. Inform. Apl. Polinema, pp. 118–123, 2020.

H. Hozairi, A. Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” Netw. Eng. Res. Oper., vol. 6, no. 2, p. 133, 2021, doi: 10.21107/nero.v6i2.237.

PlumX Metrics

Published
2023-07-29