Comparative Analysis of Cloning-Hashing Applications for Securing Digital Evidence

Abstract views: 100 , PDF downloads: 148
Keywords: cloning, hashing, evidence, security, compare


The development of the Internet has resulted in an increasing variety of cyber crimes. Cybercrime is closely related to digital evidence, so cybercriminals tend to delete, hide, and format all collected data to eliminate traces of digital evidence. This digital evidence is very vital in proving at trial, so it is necessary to develop applications to secure digital evidence. This study aims to compare the results of cloning and hashing in securing digital evidence and evaluate the performance of a digital forensic application developed under the name Clon-Hash Application v1 compared to applications commonly used by investigators including Autopsy, FTK Imager, md5.exe in terms of its function, the result, CPU usage. The results of the research conducted show that the cloning process is perfectly successful, as evidenced by the hash value results which are the same as paid applications and there are even several other applications that have not been able to display the hash value. Hash values in the Clon-Hash v1 application also vary from MD5, SHA1, and SHA256 which do not exist in other applications. Applications developed are better in terms of function, results, and CPU usage.


Author Biography

Muhammad Nur Faiz, (Scopus ID : 57203428693), Politeknik Negeri Cilacap

Program Studi Rekayasa Keamanan Siber
Jurusan Teknik Informatika


R. J. Alzahrani and A. Alzahrani, “Security analysis of ddos attacks using machine learning algorithms in networks traffic,” Electron., vol. 10, no. 23, 2021, doi: 10.3390/electronics10232919.

M. N. Faiz and W. A. Prabowo, “Comparison of Acquisition Software for Digital Forensics Purposes,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 1, pp. 37–44, Nov. 2018, doi: 10.22219/kinetik.v4i1.687.

I. Y. Anggraini, S. Sucipto, and R. Indriati, “Cyberbullying Detection Modelling at Twitter Social Networking,” JUITA J. Inform., vol. 6, no. 2, p. 113, 2018, doi: 10.30595/juita.v6i2.3350.

W. Y. Sulistyo, I. Riadi, and A. Yudhana, “Penerapan Teknik SURF pada Forensik Citra untuk Analisa Rekayasa Foto Digital,” JUITA J. Inform., vol. 8, no. 2, p. 179, 2020, doi: 10.30595/juita.v8i2.6602.

N. Al Mutawa, J. Bryce, V. N. L. Franqueira, and A. Marrington, “Forensic investigation of cyberstalking cases using Behavioural Evidence Analysis,” in Digital Investigation, 2016, vol. 16. doi: 10.1016/j.diin.2016.01.012.

M. Riskiyadi, “Investigasi Forensik Terhadap Bukti Digital Dalam Mengungkap Cybercrime,” Cyber Secur. dan Forensik Digit., vol. 3, no. 2, pp. 12–21, 2020, doi: 10.14421/csecurity.2020.3.2.2144.

Direktorat Tindak Pidana Siber Bareskrim Polri, “Jumlah Laporan Polisi yang dibuat masyarakat,”, 2022.

A. Setya and A. Suganda, “Design of Digital Evidence Collection Framework in Social Media Using SNI 27037: 2014,” JUITA J. Inform., vol. 10, no. 1, p. 127, 2022, doi: 10.30595/juita.v10i1.13149.

R. Umar, A. Yudhana, and M. N. Faiz, “Experimental analysis of web browser sessions using live forensics method,” Int. J. Electr. Comput. Eng., vol. 8, no. 5, 2018, doi: 10.11591/ijece.v8i5.pp.2951-2958.

A. F. Moussa, “Electronic evidence and its authenticity in forensic evidence,” Egypt. J. Forensic Sci., vol. 11, no. 1, p. 20, Dec. 2021, doi: 10.1186/s41935-021-00234-6.

R. Murray, “MemTri: A Memory Forensics Triage Tool using Bayesian Network and Volatility,” University of Westminster, 2016.

H. Arshad, A. Jantan, G. Keng, and A. Sahar, “A multilayered semantic framework for integrated forensic acquisition on social media,” Digit. Investig., vol. 29, pp. 147–158, 2019, doi: 10.1016/j.diin.2019.04.002.

W. Pranoto, I. Riadi, and Y. Prayudi, “Perbandingan Tools Forensics pada Fitur TRIM SSD NVMe Menggunakan Metode Live Forensics,” It J. Res. Dev., vol. 4, no. 2, pp. 135–148, 2020, doi: 10.25299/itjrd.2020.vol4(2).4615.

Republik Indonesia, Undang-Undang Republik Indonesia Nomor 19 Tahun 2016 Tentang Informasi Dan Transaksi Elektronik, no. 1. 2016, pp. 1–31. [Online]. Available: 19 Tahun 2016.pdf

M. N. Faiz, W. A. Prabowo, and M. F. Sidiq, “Studi Komparasi Investigasi Digital Forensik pada Tindak Kriminal,” Journal of Informatics, Information System, Software Engineering and Applications (INISTA), vol. 1, no. 1. pp. 63–70, 2018. doi: 10.20895/INISTA.V1I1.

M. F. Sidiq and M. N. Faiz, “Review Tools Web Browser Forensics untuk Mendukung Pencarian Bukti Digital,” J. Edukasi dan Penelit. Inform., vol. 5, no. 1, pp. 67–73, 2019, doi: 10.26418/jp.v5i1.31430.

A. Ajijola, P. Zavarsky, and R. Ruhl, “A review and comparative evaluation of forensics guidelines of NIST SP 800-101 Rev.1:2014 and ISO/IEC 27037:2012,” in 2014 World Congress on Internet Security, WorldCIS 2014, 2014, pp. 66–73. doi: 10.1109/WorldCIS.2014.7028169.

U.S. Department of Justice Office of Justice Programs, “Electronic Crime Scene Investigation: A Guide for First Responders, Second Edition,” 2001. [Online]. Available:

J. Richter, N. Kuntze, and C. Rudolph, “Securing digital evidence,” in 5th International Workshop on Systematic Approaches to Digital Forensic Engineering, SADFE 2010, 2010, pp. 119–130. doi: 10.1109/SADFE.2010.31.

M. B. Pakarti, D. H. Fudholi, and Y. Prayudi, “Manajemen Pengelolaan Bukti Digital Untuk Meningkatkan Aksesibilitas Pada Masa Pandemi Covid-19,” J. Ilm. SINUS, vol. 19, no. 1, p. 27, 2021, doi: 10.30646/sinus.v19i1.502.

A. S. Putra and Y. Prayudi, “Implementasi Multi Smart Contract pada Bukti Digital dan Chain of Custody dalam Meningkatkan Keamanan dan Integritas Bukti Digital,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 6, no. 2, pp. 98–108, 2021, doi: 10.32528/justindo.v6i2.3945.

R. Umar, A. Yudhana, and M. Nur Faiz, “Experimental Analysis of Web Browser Sessions Using Live Forensics Method,” Int. J. Electr. Comput. Eng., vol. 8, no. 5, p. 2951, 2018, doi: 10.11591/ijece.v8i5.pp2951-2958.

PlumX Metrics