Pengaruh Pemadatan Dua-arah Penekanan Terhadap Densitas dan Kekerasan AMC diperkuat Serbuk Silikon Dioksida

  • Ricky Irwansyah Politeknik Manufaktur Negeri Bangka Belitung
  • Rodika Rodika Politeknik Manufaktur Negeri Bangka Belitung
  • Agus Wanto Politeknik Manufaktur Negeri Bangka Belitung
  • Mego Wahyudi Politeknik Manufaktur Negeri Bangka Belitung
  • Sukanto Wiryono Politeknik Manufaktur Negeri Bangka Belitung
Abstract views: 224 , PDF downloads: 215
Keywords: powder metallurgy, two-way compaction, one-way compaction, aluminum matrix composite

Abstract

The compaction method of powder metallurgy technology is an important process in influencing the density and hardness of the resulting product. This study aims to determine the effect of a one-way compaction method compared to a two-way compaction method on the density and hardness of the resulting composite product. The experimental method for making aluminum matrix composites with silica sand reinforcement applies a compaction pressure of 4500 Psi. Mixing utilizing mechanical alloying used a horizontal ball mill machine. The density test refers to the Archimedes principle with the ASTM B962-17 standard, while the Rockwell Brinel hardness test uses the ASTM E110-14 standard. The results of the sample density test of the two-way compaction method of compaction showed a higher value compared to the sample density of the one-way compaction results, respectively; values of 2.132 g/cm3 and 2.119 g/cm3. The hardness value of the sample resulting from two-way compression compaction also has a higher value than the sample hardness resulting from one-way compression compaction, respectively; worth 43.67 HRB and 36.78 HRB. Furthermore, based on the results of microstructural analysis, the interlocking bonding occurs in composite samples with two-way compaction. It is also better than the interlocking mechanical bonding in composite samples resulting from one-way compaction.

References

M. Syahid, A. Hayat, and Aswar, “Effect of Graphite Addition on Aluminum Hybrid Matrix Composite by Powder Metallurgy Method,” Rev. des Compos. des Mater. Av. Compos. Adv. Mater., vol. 32, no. 3, pp. 125–132, 2022, doi: 10.18280/rcma.320303.

Sukanto, W. Suprapto, R. Soenoko, and Y. S. Irawan, “The Effect of Milling Time on The Alumina Phase Transformation in The AMCs Powder Metalllurgy Reinforced by Silica-Sand-Tailings", Eureka: Phys. Eng., no. 1, pp. 103–117, 2022, doi: 10.21303/2461-4262.2022.001906.

I. Chatur Adhi WA, A. A. Alit Triadi, M. Wijana, I. M. Nuarsa, and I. M. Mara, “Kekerasan Produk Metalurgi Serbuk Berbahan Limbah Aluminium dengan Metode Kompaksi Bertahap,” J. Sains Teknol. Lingkung., pp. 141–146, 2021, doi: 10.29303/jstl.v0i0.252.

R. Rinanda and D. Puryanti, “Analisis Sifat Magnetik Kalsium Ferit yang Disintesis Menggunakan Metode Metalurgi Serbuk,” J. Fis. Unand, vol. 9, no. 2, pp. 224–230, 2020, doi: 10.25077/jfu.9.2.224-230.2020.

S. E. Susilowati, A. Fudholi, and D. Sumardiyanto, “Mechanical and microstructural characteristics of Cu–Sn–Zn/ Gr metal matrix composites processed by powder metallurgy for bearing materials,” Results Eng., vol. 14, no. March, p. 100377, 2022, doi: 10.1016/j.rineng.2022.100377.

I. A. Wahyudie, “Hot Compaction Process Optimization For Improvement Tribology Behavior Of Zirconium Silicate Strengthened BMCs,” J. Southwest Jiaotong Univ., vol. 56, no. 4, 2021, doi: 10.35741/issn.0258-2724.56.4.27.

P. Garg, A. Jamwal, D. Kumar, K. K. Sadasivuni, C. M. Hussain, and P. Gupta, “Advance research progresses in aluminium matrix composites: manufacturing & applications,” J. Mater. Res. Technol., vol. 8, no. 5, pp. 4924–4939, 2019, doi: 10.1016/j.jmrt.2019.06.028.

M. S. El-Eskandarany, Mechanical Alloying, Nanotechnology, Material Science and Powder Metallurgy., Second Edi. Kuwait: Elsevier, 2015. doi: http://dx.doi.org/10.1016/B978-1-4557-7752-5.00001-2.

H. A. Al-Qureshi, M. R. F. Soares, D. Hotza, M. C. Alves, and A. N. Klein, “Analyses of the fundamental parameters of cold die compaction of powder metallurgy,” J. Mater. Process. Technol., vol. 199, no. 1, pp. 417–424, 2008, doi: 10.1016/j.jmatprotec.2007.08.030.

W. Suprapto dan R. Soenoko, Teknologi Metalurgi Serbuk. Solo: Pena Mas Publishing, 2015. ISBN: 978-602-73670-0-5

Pujono, "Perpatahan Fatik Material Aluminium 2024 T3 dengan Pengelasan FSW", Jurnal Infotekmesin, Vol.9 No.1 Januari 2018, https://doi.org/10.35970/infotekmesin.v9i01.5

I. P. A. Zay, F. R. Zulfi, and A. Gurning, “Daur Ulang Scrap Aluminium Sebagai Solusi Alternatif Untuk Mengurangi Ketergantungan ...,” Conf. Pap., 2014, doi: 10.13140/2.1.3237.6006.

D. Brough and H. Jouhara, “The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery,” Int. J. Thermofluids, vol. 1–2, 2020, doi: 10.1016/j.ijft.2019.100007.

E. Sutrisno, (2022) "Indonesia Menuju Industri Aluminium Berdikari", Indonesia.go.id., Rabu, 20 April 2022, 6 WIB, diakses 20 November 2022 pukul 01.30 WIB., 2022.

A. Ramanathan, P. K. Krishnan, and R. Muraliraja, “A review on the production of metal matrix composites through stir casting Furnace design, properties, challenges, and research opportunities,” J. Manuf. Process., vol. 42, pp. 213–245, 2019, doi: 10.1016/j.jmapro.2019.04.017.

C. Bulei, I. Kiss, and V. Alexa, “Development of metal matrix composites using recycled secondary raw materials from aluminium wastes,” Mater. Today Proc., vol. 45, pp. 4143–4149, 2021, doi: 10.1016/j.matpr.2020.11.926.

I. A. Wahyudie, R. Soenoko, W. Suprapto, and Y. S. Irawan, “Enhancing hardness and wear resistance of ZrSiO4-SnO2 /Cu10Sn composite produced by warm compaction and sintering,” Metalurgija, vol. 59, no. 1, pp. 27–30, 2020. https://hrcak.srce.hr/file/327708.

Sukanto, R. Soenoko, W. Suprapto, Y. S. Irawan “Characterization of aluminium matrix composite of Al-ZnSiFeCuMg alloy reinforced with silica sand tailings particles,” J. Mech. Eng. Sci., vol. 14, no. 3, pp. 7094–7108, 2020, doi: 10.15282/jmes.14.3.2020.11.0556.

Sukarman and R. A. Gani, “Lahan Bekas Tambang Timah di Pulau Bangka dan Belitung, Indonesia dan Kesesuaiannya untuk Komoditas Pertanian,” J. Tanah dan Iklim, vol. 41, no. 2, pp. 101–112, 2017, https://www.researchgate.net/publication/323390912

C. Suryanarayana, “Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials,” Research, vol. 2019, p. 17, 2019, doi: 10.34133/2019/4219812.

Munasir, Triwikantoro, M. Zainuri, R. Bäßler and Darminto, “Mechanical Strength and Corrosion Rate of Aluminium Composites ( Al / SiO2 ): Nanoparticle Silica ( NPS ) as Reinforcement,” J. Phys. Sci., vol. 30, no. 1, pp. 81–97, 2019. https://doi.org/10.21315/jps2019.30.1.7

S. Wilastari, Optimasi Temperatur yang Mempengaruhi Kekerasan pada Pembuatan Ball Mill dengan Cara Hot Rolling, Jurnal Infotekmesin, Vol.9 No.2 Juli 2018, https://doi.org/10.35970/infotekmesin.v9i02.14

Sukanto, R. Soenoko, W. Suprapto, and Y. S. Irawan, “Parameter Optimization of Ball Milling Process for Silica Sand Tailing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 494, no. 1, 2019, doi: 10.1088/1757-899X/494/1/012073.

C. Suryanarayana, “Mechanical alloying and milling,” Mech. Alloy. Milling, vol. 46, pp. 1–472, 2004, doi: 10.4150/kpmi.2006.13.5.371.

ASTM International, “Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle,” Astm B962-17, vol. i, pp. 1–7, 2017, doi: 10.1520/B0962-17.2.

E110-14, “Standard Test Method for Rockwell and Brinell Hardness of Metallic Materials by Portable Hardness Testers,” ASTM B. Stand., pp. 1–5, 2014, doi: 10.1520/E0110-14.2.

M. Asep, Sugiyarto, Somawardi, A. Rusdy dan Sukanto, "Pengaruh Variasi Tekanan Kompaksi Panas tehadap Densitas dan Kekerasan AMC Diperkuat SiO2" Machine: Jurnal Teknik Mesin Univesitas Bangka Belitung, Vol:9 No.1., 2023.

. L. H. Han, J. A. Elliott, A. C. Bentham, and A. Mills, “A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders,” Int. J. Solids Struct., vol. 45, pp. 3088–3106, 2008, doi: 10.1016/j.ijsolstr.2008.01.024.

PlumX Metrics

Published
2023-07-31