Kontrol Kestabilan Kapal Autonomous Submarine Surface Vehicle Dengan Metode Fuzzy Logic
Abstract
The Autonomous Submarine Surface Vehicle is a type of unmanned underwater vehicle. When the ship performs maneuvers, there are large Pitch and Roll motions. This research aims to control the stability of the Autonomous Submarine Surface Vehicle with Fuzzy. The first process is taking Pitch and Roll data followed by the Fuzzification process to change input data with firm values into Fuzzy values. The next stage is Inference by using the rules (if – then) and the Deffuzification process to change the results of the inference stage into output values. The last is the process of stabilizing the ship with a Thruster dc motor. When the system is activated, it has a time of 0.518 seconds faster to steady state than the deactivated system with a roll tilt of (plus) 11°. On the roll tilt of (plus) 20° the highest PWM rotation is 1600µs with a time of 9,342 seconds to steady state and the roll tilt is (plus) 11° with the highest PWM of 1500µs with a time of 4,335 seconds. Based on this research, the Fuzzy Method can control the stability of the Autonomous Submarine Surface Vehicle ship.
References
A. Vagale, R. Oucheikh, R. T. Bye, O. L. Osen, dan T. I. Fossen, “Path planning and collision avoidance for autonomous surface vehicles I: a review,” J. Mar. Sci. Technol., vol. 26, no. 4, hal. 1292–1306, 2021, doi: 10.1007/s00773-020-00787-6.
Y.-J. Tsai, Chia-Ming and Lai, Yi-Horng and Perng, Jau-Woei and Tsui, I-Fong and Chung, “Design and Application of an Autonomous Surface Vehicle with an AI-Based Sensing Capability,” in Design and Application of an Autonomous Surface Vehicle with an AI-Based Sensing Capability, 2019, hal. 1–4.
I. Munadhif, M. Syaiin, dan J. Endrasmono, “Penentuan Metode Kendali yang Optimal untuk Kestabilan Rolling Kapal Perang Indonesia,” vol. 5, hal. 767–772, 2022.
Y. Lin, Y. Lin, dan Y. Chiu, “applied sciences Stability and Manoeuvrability Simulation of a Semi-Autonomous Submarine Free-Running Model SUBOFF with an Autopilot System,” 2021.
B. Y. Suprapto, “Desain Pengembangan Sistem Pembangkit Listrik Tenaga Gelombang Laut Berbasis Keseimbangan Gyroscope,” J. Surya Energy, vol. 5, no. 2, hal. 50–54, 2022, doi: 10.32502/jse.v5i2.3328.
P. V. Patil, K. Khan, M. Korulla, V. Nagarajan, dan O. P. Sha, “Manoeuvring Simulations of Autonomous Underwater Vehicle using Quaternion,” vol. 72, no. 2, hal. 290–307, 2022.
F. S. Rahmanisa, “Analisis Pengaruh Ketinggian Gelombang Terhadap Stabilitas Dan Periode Oleng Kapal Bantu Rumah Sakit,” Politeknik Perkapalan Negeri Surabaya. [Daring]. Tersedia pada: http://repository.ppns.ac.id/id/eprint/2683
D. P. Sinaga, E. Susanto, dan R. Nugraha, “Rancang Bangun Kestabilan Posisi Sistem Kendali Manual Robot Kapal Selam Menggunakan Metode Fuzzy Logic,” e-proceeding Eng., vol. 3, no. 1, hal. 129, 2016.
D. Dimas Debriano, Suwandi, dan R. Fauzi Iskandar, “RANCANG BANGUN KONTROL KESTABILAN STATIS PADA AUTONOMOUS UNDERWATER VEHICLEMENGGUNAKAN METODE FUZZY LOGIC,” vol. 5, no. 3, hal. 5857–5864, 2018.
V. M. Nasution dan G. Prakarsa, “Optimasi Produksi Barang Menggunakan Logika Fuzzy Metode Mamdani,” J. Media Inform. Budidarma, vol. 4, no. 1, hal. 129, 2020, doi: 10.30865/mib.v4i1.1719.
L. P. Ayuningtias, M. Irfan, dan J. Jumadi, “Analisa Perbandingan Logic Fuzzy Metode Tsukamoto, Sugeno, Dan Mamdani,” J. Tek. Inform., vol. 10, no. 1, hal. 9–16, 2018.
K. Fathoni, A. P. Pratama, N. A. Salim, dan V. N. Sulistyawan, “Implementasi Kendali Keseimbangan Gerak Two Wheels Self Balancing Robot Menggunakan Fuzzy Logic,” J. Tek. Elektro, vol. 13, no. 2, hal. 89–97, 2021, doi: 10.15294/jte.v13i2.33414.
D. Syahputra dan Muhathir, “Metode Perhitungan Sugeno Fuzzy Antropometri Dan Status Memprediksi Indeks Gizi Tubuh Massa In Anthropometric Methods,” J. Informatics Telecommun. Eng., vol. 2, no. 1, hal. 16–22, 2018.
N. Rinanto, I. Marzuqi, A. Khumaidi, dan S. T. Sarena, “Obstacle Avoidance using Fuzzy Logic Controller on Wheeled Soccer Robot,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 5, no. 1, hal. 26–35, 2019, doi: 10.26555/jiteki.v5i1.13298.
W. S. Pambudi, R. A. Firmansyah, R. R. Issany, R. Y. Adhitya, dan M. Syai’in, “The application of Sugeno fuzzy to control active power load and remaining battery usage time modelling,” Indones. J. Electr. Eng. Comput. Sci., vol. 26, no. 3, hal. 1266–1273, 2022, doi: 10.11591/ijeecs.v26.i3.pp1266-1273.
Copyright (c) 2023 Abdul Hafizh Abyan Faruq, Joko Endrasmono, Isa Rachman, Agus Khumaidi, Ryan Yudha Adhitya, Zindhu Maulana Ahmad Putra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).