The Effect of Angle Orientation on Delamination Factors and Tensile Strength Values in the Drilling Process of Polyester Matrix Woven Fiberglass Composites

  • Fajar Paundra Institut Teknologi Sumatera
  • Eko Pujiyulianto Institute Technology of Sumatera
  • Abdul Muhyi Institute Technology of Sumatera
  • Firman Sri Bagaskara Institute Technology of Sumatera
  • Ilhan Manzeis Institute Technology of Sumatera
  • Ilham Ramadhan Siregar Institute Technology of Sumatera
  • Puguh Elmiawan Institute Technology of Sumatera
Abstract views: 294 , PDF downloads: 173
Keywords: composite, vacuum bagging, fiberglasss, corner orientation, delamination

Abstract

Composite is a material that is formed from a combination of 2 or more materials. The orientation of the inclination angle of the webbing on the composite affects the tensile strength value. This research was conducted to determine the effect of variations in the angle of inclination of the webbing and the phenomenon of delamination on the value of tensile strength. The process of making fiberglass woven fiber composites and a mixture of resin and catalyst uses the vacuum bagging method. The variations used in this study are the angle of inclination of the webbing 0°, 15°, 30° and 45°. Tensile test specimens using the ASTM D638 standard. The specimens that have been cut will then be perforated with a diameter of 4 mm using a milling machine. Tensile testing was carried out using a Universal Testing Machine. The highest tensile strength value is at an angle of 0° with a value of 189.30 MPa and the lowest tensile strength is at an angle of 45° with a value of 34.25 MPa and for the value of the delamination factor has little effect on the value of tensile strength.

References

M. Syaukani, F. Paundra, F. Qalbina, I. D. Arirohman, and P. Yunesti, “Desain dan Analisis Mesin Press Komposit Kapasitas 20 Ton,” pp. 29–34, 2021.

S. B. Sebastian, H. Sukma, and A. R. Tatak, “Pengembangan komposit matriks polimer berpenguat serat serabut kelapa,” J. Mek. Tek. Mesin, vol. 15, no. 1, pp. 1–5, 2020.

U. A. Khashaba, “Mechanics of chip, delamination, and burr formation in drilling supported woven GFRP composites,” Alexandria Eng. J., vol. 79, no. March, pp. 181–195, 2023, doi: 10.1016/j.aej.2023.08.004.

C. Agrawal et al., “Experimental investigation on the effect of dry and multi-jet cryogenic cooling on the machinability and hole accuracy of CFRP composites,” J. Mater. Res. Technol., vol. 18, pp. 1772–1783, 2022, doi: 10.1016/j.jmrt.2022.03.096.

S. K. Ghosh, Manufacturing engineering and technology, vol. 25, no. 1. 1991.

M. H. Nguyen and A. M. Waas, “Modeling delamination migration in composite laminates using an enhanced semi-discrete damage model (eSD2M),” Int. J. Solids Struct., vol. 236–237, no. December 2020, 2022, doi: 10.1016/j.ijsolstr.2021.111323.

C. Pramono, S. Hastuti, I. Ivandiyanto, and A. A. Trihardanto, “Analisis Sifat Bending dan Impak Komposit Berpenguat Serat Pohon Pisang,” Pros. SNST, vol. 4, no. 3, pp. 13–18, 2019.

F. Paundra, D. Istanto, E. Pujiyulianto, M. F. Arif, and S. Hastuti, “Effect of Layers on Delamination and Tensile Strength of Woven Fiber Composites with Polyester Matrix,” vol. 21, no. 1, pp. 11–20, 2024.

M. Kanugraha and N. Iskandar, “Pengaruh Fraksi Massa Serat Terhadap Kekuatan Impak Komposit Berpenguat Serat Rami Dengan Matriks Gondorukem,” J. Tek. Mesin S-1, vol. 10, no. 3, pp. 271–276, 2022.

M. Ubago Torres and M. Jalalvand, “Additive binding layers to suppress free edge delamination in composite laminates under tension,” Compos. Part A Appl. Sci. Manuf., vol. 156, no. December 2021, p. 106902, 2022, doi: 10.1016/j.compositesa.2022.106902.

I. Rodriguez, D. Soriano, G. Ortiz-De-Zarate, M. Cuesta, F. Pušavec, and P. J. Arrazola, “Effect of Tool Geometry and LCO2Cooling on Cutting Forces and Delamination when Drilling CFRP Composites Using PCD Tools,” Procedia CIRP, vol. 108, no. C, pp. 752–757, 2022, doi: 10.1016/j.procir.2022.03.116.

H. Nguyen et al., “Fiber reinforced alkali-activated stone wool composites fabricated by hot-pressing technique,” Mater. Des., vol. 186, p. 108315, 2020, doi: 10.1016/j.matdes.2019.108315.

F. Yudhanto, Sudarisman, and M.Ridlwan, “Karakterisasi Kekuatan Tarik Komposit Hybrid Lamina Serat Anyam Sisal Dan Gelas Diperkuat Polyester,” Semesta Tek., vol. 19, no. 1, pp. 48–54, 2016.

J. M. Mesin, F. P. Nurrullah, F. Paundra, A. Maulana, and A. Muhyi, “THE EFFECT OF WEBBING ANGLE ORIENTATION ON PHYSICAL AND MECHANICAL PROPERTIES OF BOEHMERIA NIVEA FIBER,” vol. 24, no. 1, pp. 25–34.

F. Paundra, A. Naufal, A. Muhyi, F. P. Nurullah, and P. Elmiawan, “Effect of Webbing Angle on Tensile and Bending Strengths in Human Hair Fiber Reinforced Composites,” vol. 24, no. 1, pp. 30–35, 2022.

A. S. N, W. Sumbodo, and R. D. Widodo, “Pengaruh Anyaman 2D Triaxial Braided Fabric Filler Kain Goni Terhadap Kekuatan Bending Dan Struktur Makro Komposit Bermatrik Polyester,” J. Kompetensi Tek., vol. 10, no. 2, pp. 46–53, 2018, doi: 10.15294/jkomtek.v10i2.16027.

F. Paundra et al., “ANALISIS KEKUATAN TARIK KOMPOSIT HYBRID,” vol. 11, no. 1, pp. 9–13, 2022.

V. S. Sreenivasan, D. Ravindran, V. Manikandan, and R. Narayanasamy, “Mechanical properties of randomly oriented short Sansevieria cylindrica fibre/polyester composites,” Mater. Des., vol. 32, no. 4, pp. 2444–2455, 2011, doi: 10.1016/j.matdes.2010.11.042.

R. Benyettou et al., “Assessment of induced delamination drilling of natural fiber reinforced composites: A statistical analysis,” J. Mater. Res. Technol., vol. 21, pp. 131–152, 2022, doi: 10.1016/j.jmrt.2022.08.161.

K. Diharjo, “Kajian Pengaruh Teknik Pembuatan Lubang Terhadap Kekuatan Tarik Komposit Hibrid Serat Gelas Dan Serat Karung Plastik,” Teknoin, vol. 11, no. 1, pp. 55–64, 2006, doi: 10.20885/teknoin.vol11.iss1.art4.

F. U. Putra, F. Paundra, A. Muhyi, F. Hakim, L. Triawan, and A. Aziz, “Pengaruh Variasi Tekanan Dan Fraksi Volume Pada Hybrid Composite Serat Sabut Kelapa Dan Serat Bambu Bermatriks Resin Polyester Terhadap,” vol. 6, no. 1, pp. 8–15, 2023.

PlumX Metrics

Published
2024-07-31