Penyusunan Model Prediksi Konsumsi Energi pada Mesin CNC Milling untuk Mencapai Pemesinan Hijau

Abstract views: 117 , PDF downloads: 111
Keywords: prediction model, energy consumption, green machining

Abstract

CNC Milling Machine is a machine tool that has a large population but low energy efficiency. The machine tool industry consumes about 10% of the national energy, making it the second largest energy user after transportation sector. To obtain efficient machine performance, the motion in the machining process must be controlled by setting the proper machining parameters. However, there is a contradiction in that CAD/CAM operators and programmers often do not understand the impact of such parameter settings and thus determine parameter values arbitrarily. This study aims to optimize machining parameter settings by providing parameter values proven to have energy-friendly performance. The method used in this research is regression-based response surface methodology. Based on numerical simulations and experiments conducted, variations in feed rate and depth of cut were shown to impact energy consumption significantly. Experiments and tests reduced the energy consumption value below 5A for 78% of the total process.

References

S. Kimura and H. Phoumin, “Energy Outlook and Energy Saving Potential in East Asia 2019.” ERIA, 2019.

A. A. Musyafiq and R. Purwanto, “Peramalan Permintaan Pasokan Energi Berdasarkan Intensitas Konsumsi Listrik dan Kapasitas Pembangkit Listrik Terpasang,” Infotekmesin, vol. 12, no. 1, pp. 65–70, Mar. 2021, doi: 10.35970/infotekmesin.v12i1.442.

S. D. Riyanto, M. Yusuf, R. P. Dewi, and R. Nurdiansyah, “Rancang Bangun CNC Router 3 Axis Ukir Kayu Untuk Kerajinan Kaligrafi,” Infotekmesin, vol. 15, no. 1, pp. 171–179, 2024, doi: 10.35970/infotekmesin.v15i1.2156.

S.-M. Wang, C.-Y. Lee, H. Gunawan, and C.-C. Yeh, “An Accuracy-Efficiency-Power Consumption Hybrid Optimization Method for CNC Milling Process,” Appl. Sci., vol. 9, no. 7, Art. no. 7, Apr. 2019, doi: 10.3390/app9071495.

K. Kusnadi, W. Wahyudin, and B. Nugraha, “Usulan Kebijakan Pemeliharan Mesin Untuk Mengurangi Frekuensi Breakdown Menggunakan Reliability Centered Maintenance,” Infotekmesin, vol. 11, no. 2, pp. 158–165, Aug. 2020, doi: 10.35970/infotekmesin.v11i2.254.

X. Zhang, T. Yu, Y. Dai, S. Qu, and J. Zhao, “Energy consumption considering tool wear and optimization of cutting parameters in micro milling process,” Int. J. Mech. Sci., vol. 178, p. 105628, Jul. 2020, doi: 10.1016/j.ijmecsci.2020.105628.

J. Mumtaz et al., “Multi-objective optimisation for minimum quantity lubrication assisted milling process based on hybrid response surface methodology and multi-objective genetic algorithm,” Adv. Mech. Eng., vol. 11, no. 4, p. 168781401982958, Apr. 2019, doi: 10.1177/1687814019829588.

S. Shankar, T. Mohanraj, and R. Rajasekar, “Prediction of cutting tool wear during milling process using artificial intelligence techniques,” Int. J. Comput. Integr. Manuf., Nov. 2018, doi: https://doi.org/10.1080/0951192X.2018.1550681.

J. Zhao, L. Li, and C. Li, “Optimization Method of Partitioned Complex Surface CNC Milling for Minimum Energy Consumption and High Efficiency,” Zhongguo Jixie GongchengChina Mech. Eng., vol. 30, pp. 64–71, Jan. 2019, doi: 10.3969/j.issn.1004-132X.2019.01.009.

G. Singh, V. Aggarwal, and S. Singh, “Critical review on ecological, economical and technological aspects of minimum quantity lubrication towards sustainable machining,” J. Clean. Prod., vol. 271, p. 122185, Oct. 2020, doi: 10.1016/j.jclepro.2020.122185.

W. Ming, F. Shen, G. Zhang, G. Liu, J. Du, and Z. Chen, “Green machining: A framework for optimization of cutting parameters to minimize energy consumption and exhaust emissions during electrical discharge machining of Al 6061 and SKD 11,” J. Clean. Prod., vol. 285, p. 124889, Feb. 2021, doi: 10.1016/j.jclepro.2020.124889.

S. Lubis, Rosehan, S. Darmawan, and B. Indra, “Tool Wear Analysis of Coated Carbide Tools on Cutting Force in Machining Process of AISI 4140 Steel,” IOP Conf. Ser. Mater. Sci. Eng., vol. 852, no. 1, p. 012083, Jul. 2020, doi: 10.1088/1757-899X/852/1/012083.

B. Öztürk, L. Uğur, and A. Yildiz, “Investigation of effect on energy consumption of surface roughness in X-axis and spindle servo motors in slot milling operation,” Measurement, vol. 139, pp. 92–102, Jun. 2019, doi: 10.1016/j.measurement.2019.02.009.

L. Hu, R. Tang, W. Cai, Y. Feng, and X. Ma, “Optimisation of cutting parameters for improving energy efficiency in machining process,” Robot. Comput. Integr. Manuf., vol. 59, pp. 406–416, Oct. 2019, doi: 10.1016/j.rcim.2019.04.015.

R. Yin, J. Ke, G. Mendis, and J. W. Sutherland, “A cutting parameter-based model for cost and carbon emission optimisation in a NC turning process,” Int. J. Comput. Integr. Manuf., vol. 32, no. 10, Art. no. 10, Oct. 2019, doi: 10.1080/0951192X.2019.1667026.

M. Malekan, C. D. Bloch-Jensen, M. A. Zolbin, K. B. Ørskov, H. M. Jensen, and R. Aghababaei, “Cutting edge wear in high-speed stainless steel end milling,” Int. J. Adv. Manuf. Technol., vol. 114, no. 9–10, pp. 2911–2928, Jun. 2021, doi: 10.1007/s00170-021-07006-5.

C. Maria and P. Ana, “Modification of the Cavity of Plastic Injection Molds: A Brief Review of Materials and Influence on the Cooling Rates,” Materials, vol. 14, no. 23, p. 7249, 2021, doi: https://doi.org/10.3390/ma14237249.

D. Hermanto, Y. Burhanuddin, S. Harun, and G. Ibrahim, “Analisis Konsumsi Energi Listrik Universal Milling Machine Pada Berbagai Keadaan Operasi dan Parameter Pemesinan,” Mechanical, vol. 9, no. 1, Nov. 2018, doi: 10.23960/mech.v9.i1.201806.

L. Yung-Chih, W. Kung-Da, and S. Wei-Cheng, “Evaluation of the optimum machining stability of a milling tool with different flutes and overhangs.,” Adv. Sci. Technol. – Res. J., vol. 13, no. 2, pp. 56–64, 2019, doi: https://doi.org/10.12913/22998624/106235.

J. Yang, Y. Zhang, Y. Huang, J. Lv, and K. Wang, “Multi-objective optimization of milling process: exploring trade-off among energy consumption, time consumption and surface roughness,” Int. J. Comput. Integr. Manuf., vol. 36, no. 2, pp. 219–238, Feb. 2023, doi: 10.1080/0951192X.2022.2078511.

T. N. Wibowo, H. Hartono, and B. Sugiantoro, “Optimasi Parameter Gravitasi Shot Peening Terhadap Kekasaran, Kekerasan dan Struktur Mikro ST 45 dengan Metode Taguchi,” Infotekmesin, vol. 12, no. 1, pp. 28–35, Mar. 2021, doi: 10.35970/infotekmesin.v12i1.519.

I. O. for Standardization, Tool Life Testing in Milling - End milling. in ISO 8688. Geneve: ISO, 1989. [Online]. Available: https://books.google.co.id/books?id=V1c8yQEACAAJ

D. Kumar, G. S. Dangayach, and P. N. Rao, “An experimental investigation to optimise injection moulding process parameters for plastic parts by using Taguchi method and multi-objective genetic algorithm,” Int. J. Process Manag. Benchmarking, vol. 9, no. 1, pp. 1–26, Feb. 2019, doi: 10.1504/IJPMB.2019.10019073.

B. Singh and H. Sodhi, RSM: A Key to Optimize Machining. Multi-Response Optimization of CNC Turning with Al-7020 Alloy. Hamburg: Anchor Academic Publishing, 2014. [Online]. Available: www.anchor-publishing.com

M. Yanis, A. S. Mohruni, S. Sharif, I. Yani, A. Arifin, and B. Khona’ah, “Application of RSM and ANN in Predicting Surface Roughness for Side Milling Process under Environmentally Friendly Cutting Fluid,” J. Phys. Conf. Ser., vol. 1198, no. 4, p. 042016, Apr. 2019, doi: 10.1088/1742-6596/1198/4/042016.

C. Feng, H. Guo, J. Zhang, Y. Huang, and S. Huang, “A Systematic Method of Optimization of Machining Parameters Considering Energy Consumption, Machining time and Surface Roughness with Experimental Analysis,” In Review, preprint, Jul. 2021. doi: 10.21203/rs.3.rs-669643/v1.

J. Lv, S. Jia, H. Wang, K. Ding, and F. T. S. Chan, “Comparison of different approaches for predicting material removal power in milling process,” Int. J. Adv. Manuf. Technol., vol. 116, no. 1–2, pp. 213–227, Sep. 2021, doi: 10.1007/s00170-021-07257-2.

Y. T. Wibowo, N. Siswanto, and M. Suef, “Response surface methodology approach in achieving multi-response setup optimization in the machining process,” Salud Cienc. Tecnol., vol. 2, no. S2, p. 190, Dec. 2022, doi: 10.56294/saludcyt2022190.

Y. Su, C. Li, G. Zhao, C. Li, and G. Zhao, “Prediction models for specific energy consumption of machine tools and surface roughness based on cutting parameters and tool wear,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 235, no. 6–7, Art. no. 6–7, May 2021, doi: 10.1177/0954405420971064.

P. J. Whitcomb, RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments, 1st ed. Productivity Press, 2004. doi: 10.4324/9781482293777.

Gatot Setyono, Slamet Riyadi, Muharom, Ong Andre Wahyu Riyanto, and Sigit Pratama, “Effect of Cutting Parameter Toward The Surface Roughness Applied In Turning Tool Steel Material,” Infotekmesin, vol. 13, no. 2, pp. 233–238, Jul. 2022, doi: 10.35970/infotekmesin.v13i2.1533.

PlumX Metrics

Published
2024-07-31