Analisis Tegangan Roll Untuk Produksi Baja Tulangan Beton Tahap Roughing Menggunakan Metode Finite Element Analysis

  • Agung Fauzi Hanafi Politeknik Negeri Banyuwangi
  • Ardi Mahardika Politeknik Negeri Banyuwangi
  • Asmar Finali Politeknik Negeri Banyuwangi
  • Mega Lazuardy Umar Politeknik Negeri Banyuwangi
  • Rochmad Eko PU Politeknik Negeri Banyuwangi
Abstract views: 106 , PDF downloads: 109
Keywords: reinforcing steel, rolling procees, billet, fea method

Abstract

Concrete reinforcing steel is alloy steel with a round cross section using a plain or fin surface and produced from a material called billet. The production process for concrete reinforcing steel generally uses a rolling process. The stress on the roll that is generated during the rolling process is something that needs to be considered. Stresses that exceed the fatigue limit will result in failure and even damage to the roll. This research aims to determine the maximum stress in rolls at the roughing stage, namely roll 1H, roll 2H, and roll 1 with standard sizes. By using the Finite Element Analysis simulation, it is expected that it can provide recommendations for the maximum roll stress produced in the rolling process. From the simulations carried out, the maximum stress value for roll 1H is 190.34 MPa, roll 2H is 227.28 MPa and roll 1 is 136.18 MPa. The stress that occurs in the roll is considered safe because it is below the fatigue stress value of the roll material.

 

References

D. Mayasari et al., “Sosialisasi dan Edukasi SNI 2052 : 2017 Tentang Baja Tulangan Beton Di SMKN 4 Tangerang,” vol. 1, no. 2, hal. 163–172, 2019, doi: doi.org/10.33322/terang.v1i2.437.

Badan Standardisasi Nasional, “Baja Tulangan Beton,” SNI 2052-2017, hal. 13, 2017.

L. Patil dan M. Dubey, “Analysis of roll chock for two-high rolling mill using ANSYS,” vol. 11, no. 2, hal. 33–37, 2022, [Daring]. Tersedia pada: http://www.isca.me/IJES/Archive/v11/i2/8.ISCA-RJEngS-2021-052.pdf

A. Tyagi dan P. Kumar, “MATHEMATICAL MODELLING FOR ROLLING FORCE AND TORQUE CONSIDERING CHATTER DURING COLD ROLLING,” Eur. Chem. Bull., vol. 11, no. 12, hal. 3037–3048, 2022, doi: 10.53555/ecb/2022.11.12.257.

K. Shi, G. Zheng, dan J. Hang, “Rolling Process Analysis of Working Rollers of Cold Rolling Mill Based on ANSYS Rolling Process Analysis of Working Rollers of Cold Rolling Mill Based on ANSYS,” 2020, doi: 10.1088/1742-6596/1624/2/022049.

P. Tiwari dan S. Sharma, “International Journal of Research Publication and Reviews,” vol. 2, no. 7, hal. 215–222, 2021, [Daring]. Tersedia pada: https://www.ijrpr.com/uploads/V2ISSUE7/IJRPR584.pdf

J. Zhang, X. Wang, H. Liu, Q. Yang, dan D. Xu, “Analysis of fatigue fracture and strength improvement of backup rolls,” IOP Conf. Ser. Mater. Sci. Eng., vol. 772, no. 1, 2020, doi: 10.1088/1757-899X/772/1/012068.

Y. Suhartini, A. Indriani, Hendra, Rispandi, dan Hernadewita, “Finite element method for stress analysis in the frame holder of generator translation and rotation motion on vertical direction mechanism for sea wave power plant,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1034, no. 1, 2021, doi: 10.1088/1757-899x/1034/1/012008.

Z. F. Emzain, U. S. Amrullah, dan A. Mufarrih, “Desain dan Analisis Elemen Hingga Model Prosthetic Ankle-Foot,” Infotekmesin, vol. 11, no. 2, hal. 87–93, 2020, doi: 10.35970/infotekmesin.v11i2.257.

R. Servin, S. A. Arreola, I. Calder, dan A. Perez, “Effect of Crown Shape of Rolls on the Distribution of Stress and Elastic Deformation for Rolling Processes,” Metals (Basel)., vol. 9, no. 11, hal. 1–16, 2019, doi: 10.3390/met9111222.

T. Wang, Z.-K. Ren, dan D.-P. He, “Equivalent Numerical Algorithm for the Strip-Rolling Process of a Continuous Variable Crown Mill Using the Coupled Rigid-Plastic Finite Element Method Equivalent Numerical Algorithm for the Strip-Rolling Process of a Continuous Variable Crown Mill Using t,” J. Mar. Sci. Technol., vol. 27, no. 2, hal. 123–132, 2019, doi: 10.6119/JMST.201904_27(2).0005.

E. Gavalas dan S. Papaefthymiou, “Prediction of Plate Crown during Aluminum Hot Flat Rolling by Finite Element Modeling,” J. Manuf. Mater. Process., vol. 3, no. 95, hal. 1–11, 2019, doi: 10.3390/jmmp3040095.

K. Hu, F. Zhu, J. Chen, N. Noda, W. Han, dan Y. Sano, “Simulation of Thermal Stress and Fatigue Life Prediction of High Speed Steel Work Roll during Hot,” Metals (Basel)., vol. 9, no. 9, hal. 996, 2019, doi: doi.org/10.3390/met9090966.

L. E. Richter, A. Carlos, dan D. M. Beber, FATIGUE AND FRACTURE, ASM Handbo. United States: ASM International, 1996.

L. Huang, G. Li, X. Wang, C. Zhang, L. Choe, dan M. Engelhardt, “High Temperature Mechanical Properties of High Strength Structural Steels Q550, Q690 and Q890,” Fire Technol., vol. 54, no. 6, hal. 1609–1628, 2018, doi: 10.1007/s10694-018-0760-9.

Abdul Aziz Salimi, “Simulasi Finite Element Analysis (FEA) dan Fabrikasi Implan untuk Perbandingan Kinerja Implan Kovensional dan Custom Cruciate Retaining (CR) untuk Penderita Osteoarthritis Berdasarkan Rekonstruksi Data MRI/CT Scan Tulang Lutut,” Tugas Akhir Jur. Tek. Mesin Univ. Islam Indones., hal. 1–115, 2023, [Daring]. Tersedia pada: https://dspace.uii.ac.id/handle/123456789/44462

L. Choe dan M. D. Engelhardt, “High Temperature Mechanical Properties of High Strength Structural Steels High Temperature Mechanical Properties of High Strength,” no. November, 2021, doi: 10.1007/s10694-018-0760-9.

PlumX Metrics

Published
2024-08-05