Analisis Pembentukan Endapan Pada Transportasi Gas Alam Pengaruh Tekanan, Temperatur, dan pH.

  • Akhlis Rahman Sari Nurhidayat Universitas Jenderal Soedirman
  • Mediansyah Fasilitas Keteknikan, PT. Pertamina Hulu Rokan
  • Nur Akhlis Sarihidaya Laksana Politeknik Negeri Cilacap
Abstract views: 106 , PDF downloads: 85
Keywords: condensate, h2s, co2 corrosion, sludge, fe3o4

Abstract

Natural gas production areas and processing sites for use in the residential and industrial sectors are separated by a long distance. Contaminants such as H2S and CO2 are present when natural gas is transported. The reaction process that occurs in the pipe walls will experience a reduction in material. A process that occurs repeatedly over a long time will form deposits at the bottom of the pipe. This research investigates the sludge produced by the pigging process every month. The sludge characters are identified using SEM and XRD testing, while the condensate is examined using XRF testing. The XRF results show that the presence of Cl- in the condensate increases the anodic reaction in the corrosion process. Condensate has a pH of 5-6, which will cause corrosion around internal piping. Sludge produces Fe3O4, FeS, and FeCO3. Fe3O4 is more dominant than FeS and FeCO3. More FeS is produced by % mol H2S than by % CO2. Because of the existing FeS, the particles formed are irregular.

References

A. Rusin, K. Stolecka-Antczak, K. Kapusta, K. Rogoziński, and K. Rusin, “Analysis of the effects of failure of a gas pipeline caused by a mechanical damage,” Energies, vol. 14, no. 22, 2021, doi: 10.3390/en14227686.

Y. Chen, Y. Xie, W. Wang, and J. Li, “Failure analysis of weld cracking of gas gathering pipeline in dewatering station,” J. Eng. Appl. Sci., vol. 69, no. 1, pp. 1–26, 2022, doi: 10.1186/s44147-022-00131-2.

J. Wang et al., “Corrosion failure analysis of the 45-degree elbow in a natural gas gathering pipeline by experimental and numerical simulation,” Eng. Fail. Anal., vol. 118, no. June, p. 104889, 2020, doi: 10.1016/j.engfailanal.2020.104889.

Q. Li and B. Liu, “Erosion-Corrosion of Gathering Pipeline Steel in Oil-Water-Sand Multiphase Flow,” Metals (Basel)., vol. 13, no. 1, 2023, doi: 10.3390/met13010080.

J. M. Jeon, Y. R. Yoo, and Y. S. Kim, “Effect of Solution Temperature on the Cavitation Corrosion Properties of Carbon Steel and its Electrochemical Effect,” Corros. Sci. Technol., vol. 20, no. 6, pp. 325–334, 2021, doi: 10.14773/cst.2021.20.6.325.

M. Gao, X. Pang, and K. Gao, “The growth mechanism of CO2 corrosion product films,” Corros. Sci., vol. 53, no. 2, pp. 557–568, 2011, doi: 10.1016/j.corsci.2010.09.060.

H. Karimi Abadeh and M. Javidi, “Assessment and influence of temperature, NaCl and H2S on CO2 corrosion behavior of different microstructures of API 5L X52 carbon steel in aqueous environments,” J. Nat. Gas Sci. Eng., vol. 67, no. May, pp. 93–107, 2019, doi: 10.1016/j.jngse.2019.04.023.

S. Luo, A. Fu, M. Liu, Y. Xue, N. Lv, and Y. Han, “Stress corrosion cracking behavior and mechanism of super 13Cr stainless steel in simulated O2/CO2 containing 3.5 wt% NaCl solution,” Eng. Fail. Anal., vol. 130, no. September, pp. 1–15, 2021, doi: 10.1016/j.engfailanal.2021.105748.

B. Wang, “Corrosion behavior and mechanism of 3Cr steel in CO2 environment with various Ca2+ concentration,” Corros. Sci., vol. 136, pp. 210–220, 2018, doi: 10.1016/j.corsci.2018.03.013.

Y. Hua, A. Shamsa, R. Barker, and A. Neville, “Protectiveness, morphology and composition of corrosion products formed on carbon steel in the presence of Cl − , Ca 2+ and Mg 2+ in high pressure CO 2 environments,” Appl. Surf. Sci., vol. 455, no. May, pp. 667–682, 2018, doi: 10.1016/j.apsusc.2018.05.140.

R. A. De Motte, R. Barker, D. Burkle, S. M. Vargas, and A. Neville, “The early stages of FeCO3scale formation kinetics in CO2corrosion,” Mater. Chem. Phys., vol. 216, pp. 102–111, 2018, doi: 10.1016/j.matchemphys.2018.04.077.

W. Sun, S. Nešić, and R. C. Woollam, “The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit,” Corros. Sci., vol. 51, no. 6, pp. 1273–1276, 2009, doi: 10.1016/j.corsci.2009.03.009.

H. Zhang, Y. L. Zhao, and Z. D. Jiang, “Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO 2 and Cl - environment,” Mater. Lett., vol. 59, no. 27, pp. 3370–3374, 2005, doi: 10.1016/j.matlet.2005.06.002.

R. Elgaddafi et al., “Modeling and experimental study of CO2 corrosion on carbon steel at elevated pressure and temperature,” J. Nat. Gas Sci. Eng., vol. 27, pp. 1620–1629, 2015, doi: 10.1016/j.jngse.2015.10.034.

Z. Jia, X. Li, C. Du, Z. Liu, and J. Gao, “Effect of the carbon dioxide pressure on the electrochemical behavior of 3Cr low alloyed steel at high temperature,” Mater. Chem. Phys., vol. 136, no. 2–3, pp. 973–979, 2012, doi: 10.1016/j.matchemphys.2012.08.035.

B. Zandinava, R. Bakhtiari, and G. Vukelic, “Failure analysis of a gas transport pipe made of API 5L X60 steel,” Eng. Fail. Anal., vol. 131, p. 105881, 2022, doi: https://doi.org/10.1016/j.engfailanal.2021.105881.

M. T. Abdu, W. Khalifa, and M. S. Abdelrahman, “Investigation of erosion-corrosion failure of API X52 carbon steel pipeline,” Sci. Rep., vol. 13, no. 1, pp. 1–15, 2023, doi: 10.1038/s41598-023-42556-6.

B. Ingham et al., “In situ synchrotron X-ray diffraction study of scale formation during CO 2 corrosion of carbon steel in sodium and magnesium chloride solutions,” Corros. Sci., vol. 56, pp. 96–104, 2012, doi: 10.1016/j.corsci.2011.11.017.

C. Sun et al., “Effect of impurity on the corrosion behavior of X65 steel in water-saturated supercritical CO 2 system,” J. Supercrit. Fluids, vol. 116, no. 2, pp. 70–82, 2016, doi: 10.1016/j.supflu.2016.05.006.

G. A. Zhang and Y. F. Cheng, “Localized corrosion of carbon steel in a CO2-saturated oilfield formation water,” Electrochim. Acta, vol. 56, no. 3, pp. 1676–1685, 2011, doi: 10.1016/j.electacta.2010.10.059.

C. Sun, J. Sun, Y. Wang, X. Lin, X. Li, and X. Cheng, “Synergistic effect of O2 , H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO 2 system,” Eval. Program Plann., vol. 107, pp. 193–203, 2016, doi: 10.1016/j.corsci.2016.02.032.

P. Sui et al., “Effect of temperature and pressure on corrosion behavior of X65 carbon steel in water-saturated CO2 transport environments mixed with H2S,” Int. J. Greenh. Gas Control, vol. 73, no. November 2017, pp. 60–69, 2018, doi: 10.1016/j.ijggc.2018.04.003.

S. Gao, B. Brown, D. Young, and M. Singer, “Formation of iron oxide and iron sulfide at high temperature and their effects on corrosion,” Corros. Sci., vol. 135, no. April 2017, pp. 167–176, 2018, doi: 10.1016/j.corsci.2018.02.045.

A. Kahyarian and S. Nesic, “H2S corrosion of mild steel: A quantitative analysis of the mechanism of the cathodic reaction,” Electrochim. Acta, vol. 297, pp. 676–684, 2019, doi: 10.1016/j.electacta.2018.12.029.

B. Dong et al., “Comparison of the characteristics of corrosion scales covering 3Cr steel and X60 steel in CO2-H2S coexistence environment,” J. Nat. Gas Sci. Eng., vol. 80, no. March, p. 103371, 2020, doi: 10.1016/j.jngse.2020.103371.

F. F. Eliyan, F. Mohammadi, and A. Alfantazi, “An electrochemical investigation on the effect of the chloride content on CO 2 corrosion of API-X100 steel,” Corros. Sci., vol. 64, pp. 37–43, 2012, doi: 10.1016/j.corsci.2012.06.032.

J. Leng et al., “Localised corrosion failure of an L245N pipeline in a CO2–O2–Cl− environment,” Corros. Eng. Sci. Technol., vol. 58, no. 4, pp. 372–383, 2023, doi: 10.1080/1478422X.2023.2188637.

Q. Y. Liu, L. J. Mao, and S. W. Zhou, “Effects of chloride content on CO2 corrosion of carbon steel in simulated oil and gas well environments,” Corros. Sci., vol. 84, pp. 165–171, 2014, doi: 10.1016/j.corsci.2014.03.025.

S. Zhang, L. Hou, H. Du, H. Wei, B. Liu, and Y. Wei, “A study on the interaction between chloride ions and CO2 towards carbon steel corrosion,” Corros. Sci., vol. 167, no. February, p. 108531, 2020, doi: 10.1016/j.corsci.2020.108531.

R. De Motte et al., “Near surface pH measurements in aqueous CO2 corrosion,” Electrochim. Acta, vol. 290, pp. 605–615, 2018, doi: 10.1016/j.electacta.2018.09.117.

A. A. Abd, S. Z. Naji, and A. S. Hashim, “Failure analysis of carbon dioxide corrosion through wet natural gas gathering pipelines,” Eng. Fail. Anal., vol. 105, no. July, pp. 638–646, 2019, doi: 10.1016/j.engfailanal.2019.07.026.

A. R. S. Nurhidayat, A. Suprihanto, and A. P. Bayuseno, “UNDERSTANDING OF CORROSION IN GAS PIPELINES OF API 5L X65 THROUGH CHARACTERIZING SLUDGE FORMED,” J. Eng. Appl. Sci., vol. 15, no. 16, pp. 1739–1743, 2020.

E. Latosov, B. Maaten, A. Siirde, and A. Konist, “The influence of O2 and CO2 on the possible corrosion on steel transmission lines of natural gas,” Energy Procedia, vol. 147, pp. 63–70, 2018, doi: 10.1016/j.egypro.2018.07.034.

R. Barker, D. Burkle, T. Charpentier, H. Thompson, and A. Neville, “A review of iron carbonate (FeCO3) formation in the oil and gas industry,” Corros. Sci., vol. 142, no. July, pp. 312–341, 2018, doi: 10.1016/j.corsci.2018.07.021.

R. C. Souza et al., “The role of temperature and H2S (thiosulfate) on the corrosion products of API X65 carbon steel exposed to sweet environment,” J. Pet. Sci. Eng., vol. 180, no. May, pp. 78–88, 2019, doi: 10.1016/j.petrol.2019.05.036.

H. Mansoori, R. Mirzaee, F. Esmaeilzadeh, A. Vojood, and A. S. Dowrani, “Pitting corrosion failure analysis of a wet gas pipeline,” Eng. Fail. Anal., vol. 82, no. August, pp. 16–25, 2017, doi: 10.1016/j.engfailanal.2017.08.012.

M. Javidi and S. Bekhrad, “Failure analysis of a wet gas pipeline due to localised CO2 corrosion,” Eng. Fail. Anal., vol. 89, no. July 2017, pp. 46–56, 2018, doi: 10.1016/j.engfailanal.2018.03.006.

PlumX Metrics

Published
2024-07-31