Pengaruh Variasi Pendinginan Terhadap Kekasaran Permukaan Hasil Proses Milling Pada Material Stainless Steel AISI 304

  • Unggul Satria Jati Politeknik Negeri Cilacap
  • Dian Prabowo Politeknik Negeri Cilacap
  • Hety Dwi Hastuti Politeknik Negeri Cilacap
Abstract views: 173 , PDF downloads: 120
Keywords: cooling medium, depth of cut, surfaces roughness, milling

Abstract

Machining processes in current developments are required to be more environmentally friendly, the use of coolant has a big impact on the environment. So air cooling media is an alternative that can be used to reduce production costs and implement environmentally friendly machining processes. This research aims to determine the level of surface roughness on AISI 304 Stainless Steel at depth of feed and cooling medium. There are two independent variables and a dependent variable. The dependent variable is cutting speed 63 mm/min and feed speed 950 mm/min, while the independent variable is variation. cooling media (room air, dromus, and cooled air) and variations in feeding depth (0.5, 0.75 and 1 mm. The results obtained from this test show the influence of variations in cooling media and depth of feed on the surface roughness of Stainless Steel AISI 304. The tools and materials used are Stainless Steel AISI 304, milling machine, dromus, cold air cooler, thermometer, pressure gauge, and tools. surface roughness tester. Tests obtained the greatest roughness results in the cooling medium using room air which showed a roughness level of 0.974 μm with a cutting speed of 63 mm per min and a feed speed of 950 mm per min. Then the smallest level of roughness is in the cooling media using cold air, namely 0.296 μm with a cutting speed of 63 mm per min and a feed speed of 950 mm per min.

References

S. Debnath, M. M. Reddy, and Q. S. Yi, “Environmental friendly cutting fluids and cooling techniques in machining: A review,” J. Clean. Prod., vol. 83, pp. 33–47, 2014, doi: 10.1016/j.jclepro.2014.07.071.

K. K. Gajrani, P. S. Suvin, S. V. Kailas, K. P. Rajurkar, and M. R. Sankar, “Machining of hard materials using textured tool with minimum quantity nano-green cutting fluid,” CIRP J. Manuf. Sci. Technol., vol. 35, pp. 410–421, 2021, doi: 10.1016/j.cirpj.2021.06.018.

A. Baumann, E. Oezkaya, D. Schnabel, D. Biermann, and P. Eberhard, “Cutting-fluid flow with chip evacuation during deep-hole drilling with twist drills,” Eur. J. Mech. B/Fluids, vol. 89, pp. 473–484, 2021, doi: 10.1016/j.euromechflu.2021.07.003.

J. A. Ghani, M. Rizal, and C. H. Che Haron, “Performance of green machining: A comparative study of turning ductile cast iron FCD700,” J. Clean. Prod., vol. 85, pp. 289–292, 2014, doi: 10.1016/j.jclepro.2014.02.029.

R. Teti, D. M. D’Addona, and T. Segreto, “Reprint of: Microbial-based cutting fluids as bio-integration manufacturing solution for green and sustainable machining,” CIRP J. Manuf. Sci. Technol., vol. 34, no. xxxx, pp. 37–46, 2021, doi: 10.1016/j.cirpj.2021.06.007.

Taufiq Rochman, Klasifikasi Proses, Gaya dan Daya Permesinan. Institut Teknologi Bandung, 2007.

M.-Y. Wang and H.-Y. Chang, “Experimental study of surface roughness in slot end milling AL2014-T6,” Int. J. Mach. Tools Manuf., vol. 44, no. 1, pp. 51–57, 2004, doi: 10.1016/j.ijmachtools.2003.08.011.

A. Rudi, A. Affandi, and Z. Fuadi, “Pengaruh Cairan Pendingin Terhadap Kekasaran Permukaan Benda Kerja Pada Proses Face Milling,” J. Rekayasa Mater. Manufaktur dan Energi, vol. 3, no. 1, pp. 16–22, 2020, doi: 10.30596/rmme.v3i1.4524.

A. Mashudi and N. A. Susanti, “Pengaruh Media Pendingin dan Kecepatan Putar Spindle Terhadap Hasil Kekasaran Permukaan Benda Kerja Pada Proses Finishing Menggunakan Mesin Bubut CNC PU,” J. Pendidik. Tek. Mesin, vol. 9, no. 3, pp. 57–66, 2020.

Paryanto, Rusnaldy, Y. Umardani, and N. Iskandar, “Simulasi Proses Pemesinan Menggunakan Udara-Dingin Dengan Tabung Vortek,” Pros. Semin. Nas. Sains dan Teknol. ke-2., no. June 2011, pp. 54–58, 2011.

N. R. Dhar and M. Kamruzzaman, “Cutting temperature, tool wear, surface roughness and dimensional deviation in turning AISI-4037 steel under cryogenic condition,” Int. J. Mach. Tools Manuf., vol. 47, no. 5 SPEC. ISS., pp. 754–759, 2007, doi: 10.1016/j.ijmachtools.2006.09.018.

Taufiq Rochim, Optimisasi Proses Pemesinan. Bandung: Institut Teknologi Bandung, 2007.

Dwi Rahdiyanta, Cairan Pendingin untuk Proses Pemesinan. Yogyakarta: Universitas Negeri Yogyakarta, 2010.

J. P. Davim, P. S. Sreejith, and J. Silva, “Turning of brasses using minimum quantity of lubricant (MQL) and flooded lubricant conditions,” Mater. Manuf. Process., vol. 22, no. 1, pp. 45–50, 2007, doi: 10.1080/10426910601015881.

P. S. Sreejith, “Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions,” Mater. Lett., vol. 62, no. 2, pp. 276–278, 2008, doi: 10.1016/j.matlet.2007.05.019.

Sunaryo, Optimasi Parameter Pemesinan Proses CNC Freis Terhadap Hasil Kekasaran Permukaan dan Keausan Pahat Menggunakan Metode Taguchi. Semarang: Universitas Diponegoro Semarang, 2010.

Widarto, Teknik Pemesinan. Buku Sekolah Elektronik (BSE), 2008.

A. Saputra, Firdaus, and I. Gunawan, “Pengaruh Variasi Media Pendingin Oli , Dromus , SS-400 Pada Proses Mesin Bubut Konvensional ( Lathe Machine ),” Teknol. Terap., vol. 2, no. 1, pp. 45–51, 2021.

PlumX Metrics

Published
2024-07-31