Implementasi Algoritma Ant Tree Miner Untuk Klasifikasi Jenis Fauna
Abstract
Classification is a field of data mining that has many methods, one of them is decision tree. Decision tree is proven to be able to classify many kinds of data such as image data and time series data. However, there are several obstacles that are often encountered in the decision tree method. Running time required for the execution of this algorithm is quite long, so this study proposed to use the ant tree miner algorithm which is a development algorithm from the C4.5 decision tree. Ant tree miner works by utilizing ant colony optimization in the process of building its tree structure. Use ant colony optimization expected can optimize the tree that will be formed. From the testing that have been carried out, an accuracy of about 95% is obtained in the process of classifying Zoo dataset with the number of ants between 60 - 90.
Copyright (c) 2021 Infotekmesin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).