Upgrading Bahan Bakar Jumputan Padat (BBJP) Sebagai Co firing Sistem Tenaga Uap Melalui Thermal Drying dan Fermentasi

  • Mastur Mastur Sekolah Tinggi Teknik Wiworotomo Purwokerto
  • Bambang Sugiantoro Sekolah Tinggi Teknik Wiworotomo
  • Nugrah Rekto Prabowo Sekolah Tinggi Teknik Wiworotomo Purwokerto
  • Nana Supiyana Sekolah Tinggi Teknik Wiworotomo Purwokerto
  • Utis Sutisna Sekolah Tinggi Teknik Wiworotomo Purwokerto
Abstract views: 299 , PDF downloads: 367
Keywords: solid recovered fuel, organik waste, calorie, co firing

Abstract

The waste sorting process produces organic and inorganic waste. It can be converted into Solid Recovered Fuel with the addition of a maximum of 20% plastic, which can be used for co-firing coal combustion in steam power systems. High humidity levels and the condition of organic waste with its various constituent components require drying and other treatments to increase the calorie content. Types of organic waste treatment, methods of drying, and decomposition of organic waste went through a fermentation process. The research aims to identify the effect of fermentation, addition of biomass, and plastic shreds of BBJP products on density, ash content, chlorine, and calorific value. Dimensions of organic waste powder at a level of 50 mesh and plastic shreds of 5-10 mesh are aimed at increasing the pellet/SRF bond. Mechanical testing data in the form of compression testing resulted in a level of resistance that exceeded pellet strength requirements and increased by 67%. Chlorine and sulfur levels are approaching the limit, but ash levels are still high. The calorific value of pellets in the fermented organic waste specimen treatment produces a higher calorific value compared to other treatments. Research on converting waste into co-firing fuel in solid form with the criteria for calorific value and physical properties that comply with the technical requirements for co-firing steam-powered systems can still be optimized to produce fuel with a higher calorie content. Reducing chlorine, sulfur, and ash levels is done for a low-carbon and environmentally friendly combustion process.

References

KLHK, “Data Capaian Kinerja Pengelolaan Sampah 222 Kabupaten/Kota se-Indonesia Tahun 2022,” Dirjen Pengelolaan Sampah, Limbah & B3 Direktorat Penanganan Sampah Kementerian Lingkungan Hidup dan Kehutanan, 2022. https://sipsn.menlhk.go.id/sipsn/

B. Triyono, M. H. Gusman, D. Hutapea, P. Prawisudha, and A. D. Pasek, “State of the art teknologi hidrotermal untuk pengolahan sampah kota menjadi bahan bakar padat,” Proceeding Semin. Nas. Tah. Tek. Mesin XV (SNTTM XV), no. Snttm Xv, pp. 433–445, 2016.

Mulhidin, F. Wicaksana, and Azwarudin, “Analisis Co-Firing Refused Derived Fuel (Rdf) Di Pembangkit Listrik Tenaga Uap (Pltu) Jeranjang Co-Firing Analysis of Refused Derived Fuel (Rdf) At the Steam Power Plant (Pltu) Jeranjang,” J. Sanitasi dan Lingkung., vol. 3, no. 1, pp. 251–258, 2022.

H. Hariana, H. Prida Putra, M. Lutfi, and A. Prismantoko, “Utilization of agricultural waste biomass for co-firing fuel for coal-fired power plant with consideration of the potential of slagging, fouling, and abrasion in pulverized coal (PC) boilers,” Adv. Food Sci. Sustain. Agric. Agroindustrial Eng., vol. 5, no. 1, pp. 95–101, 2022, doi: 10.21776/ub.afssaae.2022.005.01.8.

J. S. Tumuluru, N. A. Yancey, and J. J. Kane, “Pilot-scale grinding and briquetting studies on variable moisture content municipal solid waste bales – Impact on physical properties, chemical composition, and calorific value,” Waste Manag., vol. 125, pp. 316–327, 2021, doi: 10.1016/j.wasman.2021.02.013.

M. M. Tun and D. Juchelková, “Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review,” Environ. Eng. Res., vol. 24, no. 4, pp. 529–542, 2019, doi: 10.4491/eer.2018.327.

A. L. S. Sihombing and R. D. SAC, “Karakteristik Sampah Lama (Mining Landfill Waste) Tempat Pemrosesan Akhir Sebagai Bahan Bakar Jumputan Padat,” Semin. Nas. Penelit. dan Pengabdi. pada Masy. 2021, pp. 24–28, 2021.

B. Manufacturing, P. M. Equipment, and C. Agents, “iTeh Standards,” 2023 doi: 10.1520/D7582.

E. Naryono and Soemarno, “Indonesian Green Technology Journal Pengeringan Sampah Organik Rumah Tangga,” Indones. Green Technol. J., vol. 2, no. 2, pp. 61–69, 2013.

C. J. Sprenger and A. Uk, “CLASSIFICATION AND DENSIFICATION OF MUNICIPAL SOLID WASTE FOR BIOFUELS APPLICATIONS CORE View metadata, citation and similar papers at core,” no. August, 2017.

P. Tanger, J. L. Field, C. E. Jahn, M. W. DeFoort, and J. E. Leach, “Biomass for thermochemical conversion: Targets and challenges,” Front. Plant Sci., vol. 4, no. JUL, pp. 1–20, 2013, doi: 10.3389/fpls.2013.00218.

P. Prawisudha, B. Triyono, K. Rorimpandey, A. R. Irhamna, T. Hardianto, and A. D. Pasek, “Development of torre-briquetting process to convert mixed MSW into high energy density solid fuel,” AIP Conf. Proc., vol. 1984, 2018, doi: 10.1063/1.5046612.

H. E. Putra, E. Damanhuri, K. Dewi, and A. D. Pasek, “Hydrothermal treatment of municipal solid waste into coal-like fuel,” IOP Conf. Ser. Earth Environ. Sci., vol. 483, no. 1, 2020, doi: 10.1088/1755-1315/483/1/012021.

J. Nikiema et al., “Impact of material composition and food waste decomposition on characteristics of fuel briquettes,” Resour. Conserv. Recycl. Adv., vol. 15, no. June, p. 200095, 2022, doi: 10.1016/j.rcradv.2022.200095.

S. Nurhayati and D. Pramanda, “The Coffee Roasting Process using Fuzzy Mamdani,” IOP Conf. Ser. Mater. Sci. Eng., vol. 407, no. 1, pp. 1–5, Aug. 2018, doi: 10.1088/1757-899X/407/1/012122.

E. A. Silveira, “Acoustic field influence in the kinetics of thermochemical degradation during biomass torrefaction,” no. January, p. 129, 2018.

T. Ehrman et al., “Chemical Analysis and Testing Laboratory Analytical Procedures,” NREL-Protocols (l. 1-18), no. 07, pp. 1–186, 1998.

A. R. Choudhury et al., “Biomined and Fresh Municipal Solid Waste as Sources of Refuse Derived Fuel,” no. September, pp. 235–252, 2022, doi: 10.1007/978-3-031-07785-2_11.

V. R. S. Cheela, M. John, and B. Dubey, “Quantitative determination of energy potential of refuse derived fuel from the waste recovered from Indian landfill,” Sustain. Environ. Res., vol. 31, no. 1, 2021, doi: 10.1186/s42834-021-00097-5.

S. Gerassimidou, C. A. Velis, P. T. Williams, M. J. Castaldi, L. Black, and D. Komilis, “Chlorine in waste-derived solid recovered fuel (SRF), co-combusted in cement kilns: A systematic review of sources, reactions, fate and implications,” Crit. Rev. Environ. Sci. Technol., vol. 51, no. 2, pp. 140–186, 2021, doi: 10.1080/10643389.2020.1717298.

I. Deans, I. Dimas, and C. A. Velis, “Modelling of Solid Recovered Fuel (SRF) Properties Based on Material Composition-Chloride Quality,” Waste to Energy, vol. 6, pp. 389–399, 2016.

PlumX Metrics

Published
2024-01-27