Performance Comparison Analisis Kinerja Ensemble Learning dan Algoritma Tunggal dalam Klasifikasi Sindrom Ovarium Polikistik Menggunakan Random Forest, Logistic Regression, dan XGBoost
Abstract
Polycystic ovary syndrome (PCOS) is a hormonal disorder that is the most common cause of anovulation and infertility in women of reproductive age, affecting approximately 5-10% of the population, with up to 70% of cases undiagnosed. This highlights the need for early detection methods with high accuracy for timely treatment. Previous research utilized a classification method based on the K-Nearest Neighbor (KNN) algorithm, which demonstrated good performance with an accuracy of 93%, precision of 100%, recall of 82%, and F1-Score of 90%. This study proposes using an ensemble learning method with a voting classifier technique that combines several classification models: Random Forest Classifier, Logistic Regression, and XGBoost Classifier. The results show that the proposed method performs better with an accuracy of 95%, precision of 100%, recall of 85%, F1-Score of 92%, and an AUC (Area Under Curve) value of 94.34%
References
C. Rezki, “Literature Review : Coping Stress Pada Wanita dengan Polycystic Ovary Syndrome ( PCOS ),” vol. 5, no. September, 2024.
N. K. Widiastuti and K. Putrayana, “Resistensi Insulin Dan Kaitannya Dengan Hiperandrogenisme Pada Penderita PCOS,” Prosiding SINTESA, vol. 4, pp. 125–130, 2021.
W. Q. Salsabila, K. Adyani, and F. Realita, “Literatur Review: Faktor Resiko Sindrom Ovarium Polikistik pada Remaja,” Journal of Health (JoH), vol. 11, no. 02, pp. 164–174, 2024, doi: 10.30590/joh.v11n2.832.
D. Ratnaningsih, H. Siswatibudi, and J. Yogi Hernawan, “Gambaran Terapi Penggunaan Obat Pada Wanita Usia Subur Dengan Masalah Reproduksi Pcos (Polycystic Ovarian Syndrome) Di Yogyakarta,” Jurnal Permata Indonesia, vol. 13, no. 2, pp. 136–144, 2022, doi: 10.59737/jpi.v13i2.172.
N. L. P. R. Dewi, “Pendekatan Terapi Polycystic Ovary Syndrome (PCOS),” Cermin Dunia Kedokteran, vol. 47, no. 11, p. 703, 2020, doi: 10.55175/cdk.v47i11.1201.
J. Br Sembiring, D. Kadir, and K. Sukatendel, “Sosialisasi Penanganan Permasalahan Sistem Reproduksi Dan Infertilitas Pada Wanita Melalui Webinar (Focus on IMS, Miom, PCOS, Radang Panggul dan Infertilitas),” Window of Community Dedication Journal, vol. 02, no. 01, pp. 14–23, 2021, doi: 10.33096/wocd.vi.1759.
F. I. R. Dewi and C. A. Christanty, “Sosialisasi sehat mental menjalani perawatan PCOS,” Prosidin Seri Seminar Nasional (SERINA), pp. 1597–1602, 2021.
N. T. Pitaloka and K. Kusnawi, “Pcos Disease Classification Using Feature Selection Rfecv and Eda With Knn Algorithm Method,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 4, pp. 693–701, 2023, doi: 10.52436/1.jutif.2023.4.4.831.
K. Nisa, P. Purwono, B. P. Dewa, and ..., “Model Comparison of Random Forest and Logistic Regression Algorithms in PCOS Disease Detection,” Kesatria: Jurnal …, vol. 4, no. 1, pp. 73–79, 2023.
F. Novianti and N. Ulinnuha, “Data Rekam Medis Pcos Menggunakan Svm Feature Selection Using Genetic Algorithm In Pcos Medical Record Data Classification Using Svm.,” vol. 9, no. 1, pp. 9–19, 2024.
O. Nurdiawan, H. Susana, and A. Faqih, “Deep Learning for Polycystic Ovarian Syndrome Classification Using Convolutional Neural Network,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 9, no. 2, pp. 218–226, 2024, doi: 10.33480/jitk.v9i2.4575.
K. Raut, C. Katkar, and P. S. A. Itkar, “PCOS Detect using Machine Learning Algorithms,” vol. 09, no. 01, pp. 1214–1218, 2022.
A. A. Khan, O. Chaudhari, and R. Chandra, “A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation,” Expert Syst Appl, vol. 244, no. May 2023, p. 122778, 2024, doi: 10.1016/j.eswa.2023.122778.
M. Rama, H. Suryanto, and D. W. Utomo, “Pembelajaran Ensemble Untuk Klasifikasi Ulasan Pelanggan E-commerce Menggunakan Teknik Boosting,” vol. 15, no. 02, pp. 238–244, 2024, doi: 10.35970/infotekmesin.v15i2.2314.
M. Syukron, R. Santoso, and T. Widiharih, “Perbandingan Metode SMOTE Random Forest dan SMOTE XGBoost untuk Klasifikasi Tingkat Penyakit Hepatitis C pada Imbalance Class Data,” Jurnal Gaussian, vol. 9, no. 3, pp. 227–236, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
I. Binanto and N. F. Sianipar, “Perbandingan Algoritma Klasifikasi Random Forest, Gaussian Naive Bayes, dan KNearest Neighbor untuk Data Tidak Seimbang dan Data yang diseimbangkan dengan Metode Adaptive Synthetic”, doi: 10.35842/sintaks.v2i1.30.
W. Apriliah et al., “SISTEMASI: Jurnal Sistem Informasi Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest,” Jan. 2021. [Online]. Available: http://sistemasi.ftik.unisi.ac.id
O. Pahlevi and Y. Handrianto, “Implementasi Algoritma Klasifikasi Random Forest Untuk Penilaian Kelayakan Kredit,” Jun. 2023. [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/infortech
H. Nalatissifa, W. Gata, S. Diantika, and K. Nisa, “Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, p. 578, Dec. 2021, doi: 10.32493/informatika.v5i4.7575.
F. Reviantika, Y. Azhar, and G. I. Marthasari, “Analisis Klasifikasi SMS Spam Menggunakan Logistic Regression,” REPOSITOR, vol. 3, no. 4, pp. 387–392, 2021, [Online]. Available: https://www.cnbcindonesia.com
A. D. Achmad, “Klasifikasi Breast Cancer Menggunakan Metode Logistic Regression.,” JTRISTE, vol. 9, no. 1, pp. 143–148, 2022.
J. T. Samudra, R. Rosnelly, Z. Situmorang, and P. S. Ramadhan, “Model Klasifikasi Jenis Hewan Dengan SVM, KNN, Logistic Regression Menggunakan Pre-Trained VGG 16,” Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), vol. 22, no. 2, pp. 225–231, Aug. 2023, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jis/index
E. H. Yulianti, O. Soesanto, and Y. Sukmawaty, “Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit,” JOMTA Journal of Mathematics: Theory and Applications, vol. 4, no. 1, 2022.
M. K. Nasution, R. Rohmat Saedudin, and V. P. Widartha, “Perbandingan Akurasi Algoritma Naïve Bayes dan Algoritma XGBoost dalam Klasifikasi Penyakit Diabetes.,” Bandung, Oct. 2021.
I. M. Hamdani1 et al., “INTISARI Jurnal Inovasi Pengabdian Masyarakat Edukasi dan Pelatihan Data Science dan Data Preprocessing,” Juni, vol. 2, no. 1, 2024, doi: 10.58227/intisari.v2i1.125.
M. Radhi, D. Ryan Hamonangan Sitompul, S. Hamonangan Sinurat, and E. Indra, “Analisis Big Data Dengan Metode Exploratory Data Analysis (EDA) dan Metode Visualisasi Menggunakan Jupyter Notebook.,” Jurnal Sistem Informasi dan Ilmu Komputer Prima, vol. 4, no. 2, 2021.
I. N. Azizah, P. R. Arum, and R. Wasono, “Model Terbaik Uji Multikolinearitas untuk Analisis Faktor-Faktor yang Mempengaruhi Produksi Padi di Kabupaten Blora Tahun 2020 The Best Model for Multicollinearity Test to Analyze Rice Production’s Factors in Blora Regency on 2020,” 2021.
A. Devia and B. Soewito, “Analisis Perbandingan Metode Seleksi Fitur untuk Mendeteksi Anomali pada Dataset CIC-IDS-2018,” Jurnal Teknologi Dan Sistem Informasi Bisnis-JTEKSIS, vol. 5, no. 4, p. 572, 2023, doi: 10.47233/jteksis.v5i4.1069.
A. A. Ramadana Lubis, S. I. Purnama, and M. A. Afandi, “Sistem Pendeteksi Kantuk Berbasis Metode Haar Cascade Untuk Aplikasi Computer Vision,” Techno.Com, vol. 22, no. 3, pp. 589–598, Aug. 2023, doi: 10.33633/tc.v22i3.8464.
Nugroho Budi and Denih Asep, “Perbandingan Kinerja Metode Pra-Pemrosesan Dalam Pengklasifikasian Otomatis Dokumen Paten,” KOMPUTASI: Jurnal Ilmiah Ilmu Komputer dan Matematika, vol. 17, no. 2, pp. 381–387, 2020.
S. H. Zulaikhah, A. Aziz, and W. Harianto, “Optimasi Algoritma K-Nearest Neighbor (KNN) Dengan Normalisasi dan Seleksi Fitur Untuk Klasifikasi Penyakit Liver.,” 2022. [Online]. Available: https://archive.ics.uci.edu/ml/index.php
I. Pratama, A. Y. Chandra, and P. T. Presetyaningrum, “Seleksi Fitur dan Penanganan Imbalanced Data menggunakan RFECV dan ADASYN,” Jurnal Eksplora Informatika, vol. 11, no. 1, pp. 38–49, Jan. 2022, doi: 10.30864/eksplora.v11i1.578.
Copyright (c) 2025 Thesa Permatasari Djaka Djaka, Nurul Anisa Sri Winarsih
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).