Investigation on Exhaust Emission and Performance of SI-Matic Engine Applied Acetone-Butanol-Ethanol (ABE) Fuel Mixtures
Abstract
Acetone-butanol-ethanol (ABE) is a preferred alternative energy for SI engines. This research uses an experimental method with an automatic SI engine, RON-90 fuel mixed with ABE1 (12:8:1)v/v, ABE2 (15:10:1)v/v and ABE3 (1i8:12:1) v/v. Engine speed is 4000-10000rpm, and compression ratio is 11.6:1. Emission and engine performance testing used EPSG4-Gas analyzer and Dynotest-chassis type 50L-BRT. This research aims to explore the mixture of RON-90 and ABE to optimize performance and exhaust emissions. This research shows that torque increases by an average of 14.7% at an engine speed of 6000rpm. Power increased significantly with an average value of 9.5% at an engine speed of 8000rpm, MEP increased by 0.5%, and thermal efficiency increased by 7%. SFC experienced a fairly optimal decrease of 15.6% on average. The exhaust gas emissions produced are CO and HC. The reduction in CO and HC occurred in the ABE3 variant with values of 8.2% and 1.6%, respectively.
References
W. Guillin-Estrada, D. Maestre-Cambronel, A. Bula-Silvera, A. Gonzalez-Quiroga, and J. Duarte-Forero, “Combustion and Performance Evaluation of a Spark Ignition Engine Operating with Acetone–Butanol–Ethanol and Hydroxy,” Appl. Sci. 2021, Vol. 11, Page 5282, vol. 11, no. 11, p. 5282, Jun. 2021, doi: 10.3390/APP11115282.
Z. Guo, X. Yu, Y. Du, and T. Wang, “Comparative study on combustion and emissions of SI engine with gasoline port injection plus acetone-butanol-ethanol (ABE), isopropanol-butanol-ethanol (IBE) or butanol direct injection,” Fuel, vol. 316, p. 123363, May 2022, doi: 10.1016/J.FUEL.2022.123363.
D. Li, H. Wang, X. Yu, and H. Yang, “Combustion and emission characteristics of an Acetone-Butanol-Ethanol (ABE) spark ignition engine with hydrogen direct injection,” Int. J. Hydrogen Energy, vol. 46, no. 58, pp. 30145–30157, Aug. 2021, doi: 10.1016/J.IJHYDENE.2021.06.144.
U. Kesieme, K. Pazouki, A. Murphy, and A. Chrysanthou, “Biofuel as an alternative shipping fuel: technological, environmental and economic assessment,” Sustain. Energy Fuels, vol. 3, no. 4, pp. 899–909, Mar. 2019, doi: 10.1039/C8SE00466H.
Z. Guo et al., “Research on the combustion and emissions of an SI engine with acetone-butanol-ethanol (ABE) port injection plus gasoline direct injection,” Fuel, vol. 267, p. 117311, May 2020, doi: 10.1016/J.FUEL.2020.117311.
I. Veza, M. F. M. Said, and Z. A. Latiff, “Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: A review,” Fuel Process. Technol., vol. 196, p. 106179, Dec. 2019, doi: 10.1016/J.FUPROC.2019.106179.
I. Veza, M. F. Muhamad Said, and Z. A. Latiff, “Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation,” Biomass and Bioenergy, vol. 144, p. 105919, Jan. 2021, doi: 10.1016/J.BIOMBIOE.2020.105919.
H. González-Peñas, T. A. Lu-Chau, G. Eibes, and J. M. Lema, “Energy requirements and economics of acetone–butanol–ethanol (ABE) extractive fermentation: a solvent-based comparative assessment,” Bioprocess Biosyst. Eng. 2020 4312, vol. 43, no. 12, pp. 2269–2281, Jul. 2020, doi: 10.1007/S00449-020-02412-7.
Q. Tang, P. Jiang, C. Peng, X. Duan, and Z. Zhao, “Impact of acetone–butanol–ethanol (ABE) and gasoline blends on the energy balance of a high-speed spark-ignition engine,” Appl. Therm. Eng., vol. 184, p. 116267, Feb. 2021, doi: 10.1016/J.APPLTHERMALENG.2020.116267.
G. Wu, D. Wu, Y. Li, L. Meng, and D. Zhou, “Effect of Acetone- n -Butanol-Ethanol (ABE) as an Oxygenate on Combustion, Performance, and Emission Characteristics of a Spark Ignition Engine,” J. Chem., vol. 2020, 2020, doi: 10.1155/2020/7468651.
S. M. N. Rahaju et al., “Acetone-Butanol-Ethanol as the Next Green Biofuel - A Review,” Automot. Exp., vol. 5, no. 3, pp. 251–260, Jun. 2022, doi: 10.31603/AE.6335.
J. Benajes, R. Novella, J. Gomez-Soriano, P. J. Martinez-Hernandiz, C. Libert, and M. Dabiri, “Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines,” Appl. Energy, vol. 248, pp. 576–588, Aug. 2019, doi: 10.1016/J.APENERGY.2019.04.131.
P. Dinesha, S. Mohan, and S. Kumar, “Experimental investigation of SI engine characteristics using Acetone-Butanol-Ethanol (ABE) – Gasoline blends and optimization using Particle Swarm Optimization,” Int. J. Hydrogen Energy, vol. 47, no. 8, pp. 5692–5708, Jan. 2022, doi: 10.1016/J.IJHYDENE.2021.11.119.
Q. Tang, K. Ren, X. Xie, T. Chen, P. Jiang, and D. Zhang, “The effect of acetone-butanol-ethanol and gasoline blends on the knocking performance of spark-ignition engine,” Therm. Sci. Eng. Prog., vol. 46, p. 102175, Dec. 2023, doi: 10.1016/J.TSEP.2023.102175.
Y. Li, W. Tang, Y. Chen, J. Liu, and C. fon F. Lee, “Potential of acetone-butanol-ethanol (ABE) as a biofuel,” Fuel, vol. 242, pp. 673–686, Apr. 2019, doi: 10.1016/J.FUEL.2019.01.063.
Y. Li, Z. Ning, C. fon F. Lee, J. Yan, and T. H. Lee, “Effect of acetone-butanol-ethanol (ABE)–gasoline blends on regulated and unregulated emissions in spark-ignition engine,” Energy, vol. 168, pp. 1157–1167, Feb. 2019, doi: 10.1016/J.ENERGY.2018.12.022.
Z. Guo, X. Yu, G. Li, Y. Sun, Z. Zhao, and D. Li, “Comparative study of different injection modes on combustion and particle emission of acetone-butanol-ethanol (ABE) and gasoline in a dual-injection SI engine,” Fuel, vol. 281, p. 118786, Dec. 2020, doi: 10.1016/J.FUEL.2020.118786.
Copyright (c) 2024 Gatot Setyono, Navik Kholili, Galih Ageng Kurniawan, Deny Surya Pratama
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).