Uji Eksperimental Efisiensi Panas Alat Pengering Surya dengan Menambahkan Batu Koral Sebagai Material Sensible Heat Storage

Abstract views: 62 , PDF downloads: 63
Keywords: pebble stone, sensible heat storage, solar dryer, thermal efficiency

Abstract

Renewable energy sources originating from solar are the most environmentally friendly energy because they do not cause any pollution. The utilization of solar energy can be in the form of a direct passive solar dryer for preserving agricultural and fishery products. Solar energy has limitations related to intermittent solar irradiation, so it is necessary to add Sensible Heat Storage (SHS) material to increase thermal efficiency. Pebble stones are an SHS material that is abundantly available in a variety of colors, and suitable for solar dryers with low-temperature requirements. The study aimed to find temperature conditions and thermal efficiency through experimental tests three times, twice with SHS material, respectively white and black pebble stones, and once without SHS material. The experimental test results found that the temperature of the drying chamber was more stable with the addition of SHS material, and the highest thermal efficiency was obtained from black pebble stones, namely 49%, and white pebble stones, 40%.

 

References

I. Sarbu and C. Sebarchievici, “A comprehensive review of thermal energy storage,” Sustain., vol. 10, no. 1, 2018, doi: 10.3390/su10010191.

H. Panchal, J. Patel, and S. Chaudhary, “A comprehensive review of solar cooker with sensible and latent heat storage materials,” Int. J. Ambient Energy, vol. 40, no. 3, pp. 329–334, 2019, doi: 10.1080/01430750.2017.1392357.

Kemas Muhammat Abdul Fatah, Indriyani, and Ari Beni Santoso, “Uji Eksperimental Efisiensi Panas Alat Pengering Surya Langsung Pasif Berbiaya Murah dengan Variasi Material Penutup Transparan,” Infotekmesin, vol. 13, no. 2, pp. 245–250, 2022, doi: 10.35970/infotekmesin.v13i2.1535.

M. S. Boedoyo, “Potensi Dan Peranan Plts Sebagai Energi Alternatif Masa Depan Di Indonesia,” J. Sains dan Teknol. Indones., vol. 14, no. 2, 2013, doi: 10.29122/jsti.v14i2.919.

Faisal Afif and Awaludin Martin, “Tinjauan Potensi dan Kebijakan Energi Surya di Indonesia,” J. Engine Energi, Manufaktur, dan Mater., vol. 6, no. 1, pp. 43–52, 2022.

S. K. Verma, N. K. Gupta, and D. Rakshit, “A comprehensive analysis on advances in application of solar collectors considering design, process and working fluid parameters for solar to thermal conversion,” Sol. Energy, vol. 208, no. August, pp. 1114–1150, 2020, doi: 10.1016/j.solener.2020.08.042.

A. Gautam and R. P. Saini, “A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications,” Sol. Energy, vol. 207, no. July, pp. 937–956, 2020, doi: 10.1016/j.solener.2020.07.027.

G. Alva, Y. Lin, and G. Fang, “An overview of thermal energy storage systems,” Energy, vol. 144, pp. 341–378, 2018, doi: 10.1016/j.energy.2017.12.037.

T. Bauer, W. D. Steinmann, D. Laing, and R. Tamme, “Thermal Energy Storage Materials and Systems,” Annu. Rev. Heat Transf., vol. 15, pp. 131–177, 2012, doi: 10.1615/AnnualRevHeatTransfer.2012004651.

A. Aggarwal, N. Goyal, and A. Kumar, “Thermal characteristics of sensible heat storage materials applicable for concentrated solar power systems,” Mater. Today Proc., vol. 47, no. xxxx, pp. 5812–5817, 2021, doi: 10.1016/j.matpr.2021.04.174.

M. R. D. Astanto, L. O. Nelwan, and Edy Hartulistiyoso, “Karakteristik Batu Basalt Sebagai Media Penyimpan Panas Pembakaran Biomassa pada Sistem Pengering Gabah,” J. Keteknikan Pertan., vol. 10, no. 3, pp. 305–318, 2022.

K. B. Saputra, A. Aziz, L. R. Termal, J. T. Mesin, F. Teknik, and U. Riau, “Pengaruh Penyimpan Panas Pada Alat Pengering Surya,” vol. 5, pp. 1–5, 2018.

M. F. Noor, M. F. Noor, J. T. Mesin, F. Teknik, U. P. Marga, and P. Panas, “Analisa Penggunaan Bahan Penyimpan Panas Pada Kolektor,” vol. 2, pp. 13–16.

Suhendra and N. Feby, “Analisis Penggunaan Batu Serpih Sebagai Media,” Turbo, vol. 7, no. 2, pp. 125–132, 2018.

S. Manohar, K. Bala, M. Santhanam, and A. Menon, “Characteristics and deterioration mechanisms in coral stones used in a historical monument in a saline environment,” Constr. Build. Mater., vol. 241, p. 118102, 2020, doi: 10.1016/j.conbuildmat.2020.118102.

L. Doulos, M. Santamouris, and I. Livada, “Passive cooling of outdoor urban spaces. The role of materials,” Sol. Energy, vol. 77, no. 2, pp. 231–249, 2004, doi: 10.1016/j.solener.2004.04.005.

W. B. Chaouch, A. Khellaf, A. Mediani, M. E. A. Slimani, A. Loumani, and A. Hamid, “Experimental investigation of an active direct and indirect solar dryer with sensible heat storage for camel meat drying in Saharan environment,” Sol. Energy, vol. 174, no. April, pp. 328–341, 2018, doi: 10.1016/j.solener.2018.09.037.

H. Atalay, “Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system,” Energy, vol. 172, pp. 1037–1052, 2019, doi: 10.1016/j.energy.2019.02.023.

H. Panchal, “Annual performance analysis of various energy storage materials in the upper basin of a double-basin solar still with vacuum tubes,” Int. J. Ambient Energy, vol. 41, no. 4, pp. 435–451, 2020, doi: 10.1080/01430750.2018.1472653.

H. Atalay, “Assessment of energy and cost analysis of packed bed and phase change material thermal energy storage systems for the solar energy-assisted drying process,” Sol. Energy, vol. 198, no. January, pp. 124–138, 2020, doi: 10.1016/j.solener.2020.01.051.

G. Murali, K. Rama Krishna Reddy, M. Trinath Sai Kumar, J. SaiManikanta, and V. Nitish Kumar Reddy, “Performance of solar aluminium can air heater using sensible heat storage,” Mater. Today Proc., vol. 21, no. xxxx, pp. 169–174, 2020, doi: 10.1016/j.matpr.2019.04.213.

F. M. Amoruso, U. Dietrich, and T. Schuetze, “Indoor thermal comfort improvement through the integrated BIM-parametricworkflow-based sustainable renovation of an exemplary apartment in Seoul, Korea,” Sustain., vol. 11, no. 14, 2019, doi: 10.3390/su11143950.

M. Yahya, “Performance analysis of solar drying system using double pass solar air collector with finned absorber for drying copra,” Contemp. Eng. Sci., vol. 11, no. 11, pp. 523–536, 2018, doi: 10.12988/ces.2018.811.

B. Santoso and R. R. Santoso, “Desain Dan Studi Eksperimental Unit Solar Dryer Berbahan Plastik Uv Terhadap Laju Pengeringan Daun Mengkudu,” Appl. Innov. …, 2022, [Online]. Available: http://ejournal.ft.unsri.ac.id/index.php/avoer/article/view/1254%0Ahttp://ejournal.ft.unsri.ac.id/index.php/avoer/article/download/1254/783.

A. Palacios, C. Barreneche, M. E. Navarro, and Y. Ding, “Thermal energy storage technologies for concentrated solar power – A review from a materials perspective,” Renew. Energy, vol. 156, pp. 1244–1265, 2020, doi: 10.1016/j.renene.2019.10.127.

PlumX Metrics

Published
2024-01-23