Analisa Beban Penekanan Hidrolis Terhadap Kekerasan Komposit Resin Epoksi Berpenguat Serbuk Kulit Jagung dan Fly Ash Menggunakan Metode Compression Molding
Abstract
Using fly ash and natural fibers as environmentally friendly composite materials is expected to reduce the negative impact of fly ash as industrial waste, turning it into a material with added value. One of the methods in composite manufacturing is the compression molding method. This research aims to analyze the influence of compaction loading variations on the hardness values of epoxy composites reinforced with corn husk-fly ash powder. The research begins with producing composite specimens containing corn husk powder (20% wt) and fly ash (10% wt). The specimens are pressed with compaction loading variations of 1 ton, 2 tons, 3 tons, and 4 tons. The specimens from the compression molding are then subjected to sintering treatment at 150°C for 1 hour, followed by Shore D hardness testing. The results show that the composite material's hardness increases with the compaction loading. The highest hardness is achieved at a compaction load of 4 tons with a hardness value of 80.3 SHD. The compaction process of the composite material produces a fly ash structure that undergoes agglomeration or structural densification. This phenomenon results in an increase in the hardness of the material along with an increase in the compaction loading.
References
R. Manurung, S. Simanjuntak, J. Sembiring, and E. Candra, “Analisa Kekuatan Bahan Komposit Yang Diperkuat Serat Bambu Menggunakan Resin Polyester Dengan Memvariasikan Susunan Serat,” SJoME, vol. 2, no. 1, pp. 28–35, 2020.
H. S. Enus, G. Soebiyakto, A. R. Fadhillah, and D. Hermawan, “Analisa Tensile Strength Komposit Serat Kulit Pohon Waru dengan Kombinasi Serat Karbon Kevlar Sebagai Material Reinforcement,” Infotekmesin, vol. 14, no. 02, pp. 250–256, 2023, doi: 10.35970/infotekmesin.v14i2.1888.
M. A. Suhot, M. Z. Hassan, S. A. Aziz, and M. Y. M. Daud, “Recent Progress of Rice Husk Reinforced Polymer Composites :,” Polymers (Basel)., vol. 13, p. 2391, 2021.
Y. E. Xuan, C. Shaojun, and Z. Zhongbin, “Effect of coupling agent content on properties of fly ash filled acrylic coating Effect of coupling agent content on properties of fly ash filled acrylic coating,” J. Phys. Conf. Ser., p. 012077, 2021, doi: 10.1088/1742-6596/1965/1/012077.
A. K. Kasar, N. Gupta, P. K. Rohatgi, and P. L. Menezes, “A Brief Review of Fly Ash as Reinforcement for Composites with Improved Mechanical and Tribological Properties,” JOM, vol. 72, no. 6, pp. 2340–2351, 2020, doi: 10.1007/s11837-020-04170-z.
B. N. Arianto, Kosjoko, and M. H. Bahri, “Pengaruh Variasi Material Penguat Abu Layang Batubara Dan Serbuk Besi Bermatriks Epoxy Terhadap Uji Mekanik Kampas Rem,” J. Tek. Mesin UNISKA, vol. 7, no. 1, pp. 26–33, 2022.
M. S. Thathsarani, M. J. Dheerasinghe, M. Rajapaksha, S. K. Ranatunga, and S. Perera, “Sustainable Use of Biomass Boiler Ash as a Reinforcement Filler for Polyamide 6 Composite,” vol. 1, no. 1, pp. 161–176, 2021, [Online]. Available: https://doi.org/10.31357/ait.v1i1.4884
M. H. Alamsyah and G. Gundara, “Analysis of Mechanical Properties Character of Mechanics Composite Brake Pads Material Reinforced by Teak Wood Powder and Brass Powder,” R.E.M. (Rekayasa Energi Manufaktur), vol. 5, no. 1, pp. 1–5, 2020, doi: 10.21070/rem.v.
J. Kumar, B. Singh, and V. K. Maan, “Fabrication and development of natural fibres reinforced epoxy composites using fly ash as filler material,” Int. J. Latest Eng. Manag. Res., vol. 04, no. 06, pp. 125–131, 2019.
M. Elkolali, L. P. Nogueira, P. O. Rønning, and A. Alcocer, “Void Content Determination of Carbon Fiber Reinforced Polymers : A Comparison between Destructive and,” Polymers (Basel)., vol. 14, p. 1212, 2022.
G. B. Nyior and E. C. Mgbeahuru, “Effects of Processing Methods on Mechanical Properties of Alkali Treated Bagasse Fibre Reinforced Epoxy Composite,” J. Miner. Mater. Charact. Eng., vol. 6, pp. 345–355, 2018, doi: 10.4236/jmmce.2018.63024.
A. D2240, “Standard Test Method for Rubber Property — Durometer Hardness,” 2021, doi: 10.1520/D2240-15.2.
N. P. Kim, “3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane,” Polymers (Basel)., vol. 12, p. 1224, 2020, doi: 10.3390/polym12061224.
M. Selection, “Durometer & IRHD Hardness Tester for Hardness test of vulcanized or thermoplastic rubber,” pp. 58–71, [Online]. Available: https://teclock.co.jp/pdf/E_10durometer.pdf
A. W. Nugroho, M. K. P. Prasetyo, and C. Budiyantoro, “Effect of Fly Ash on the Mechanical Properties of Polyvinyl Chloride-Fly Ash Composite,” Proc. ofthe 6th Int. Conf. Exhib. Sustain. Energy Adv. Mater., pp. 667–674, 2020, [Online]. Available: https://doi.org/10.1007/978-981-15-4481-1_63
Z. Arif, N. Ali, and S. Mulyati, “Pengaruh Pembebanan Tekan Terhadap Kekuatan Material Komposit Diperkuat Serat Ampas Tebu,” J. Ilm. JURUTERA, vol. 5, no. 1, pp. 1–8, 2019.
U. Hasanah and Muslimin, “Pengaruh Tekanan Compression Moulding terhadap Kinerja Pelat Bipolar Komposit Grafit / Resin Epoksi Komposisi 20 % Karbon Tempurung Kelapa,” J. Mek. Terap., vol. 01, no. 01, pp. 71–80, 2020.
R. A. P. Ginting and Maulida, “Pengaruh Komposisi Pengisi Serta Tekanan Hot Press Terhadap Kekuatan Tarik Komposit Poliester Berpengisi Nano Partikel Zinc Oxide ( Zno ) The Effect Of Filler Loading And Pressure Of Hot Press On Tensile,” J. Tek. Kim. USU, vol. 8, no. 1, 2019.
R. Zulfiati, Saloma, and Y. Idris, “Mechanical Properties of Fly Ash-Based Geopolymer with Natural Fiber,” J. Phys. Conf. Ser., no. 1198, p. 082021, 2019, doi: 10.1088/1742-6596/1198/8/082021.
O. A. Abbass, A. I. Salih, and O. M. Al Hurmuzy, “Study of the mechanical and physical properties of bio-composite material based on wheat starch and wheat straw fibers Study of the mechanical and physical properties of bio- composite material based on wheat starch and wheat straw fibers,” IOP Conf. Ser. Mater. Sci. Eng., no. 745, p. 012075, 2020, doi: 10.1088/1757-899X/745/1/012075.
A. Choudhury, J. Nanda, and S. N. Das, “The effect of compaction pressure , sintering time , and temperature on the characterization of an aluminum / alumina composite with rising alumina proportions,” Curr. Chem. Lett., vol. 12, pp. 305–316, 2023, doi: 10.5267/j.ccl.2022.12.008.
Copyright (c) 2024 Mirza Pramudia, Teguh Prasetyo, Rifky Maulana Yusron, Mohammad Safiudin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).