Comparison of VGG16, MobileNetV2, InceptionV3, ResNet50, and Custom CNN Architectures for Furniture Image Classification

  • Epiphany Shavna Gracia Universitas Dian Nuswantoro
  • Nurul Anisa Sri Winarsih Universitas Dian Nuswantoro
Abstract views: 0 ,
Keywords: furniture, cnn, vgg-16, mobilenetv2, image classification

Abstract

The rapid development of technology in the current digital era is driving increased demand across various sectors, including the furniture industry. Classifying furniture images is one of the critical challenges in image processing and computer vision, mainly due to the diversity of types. This research aims to understand how pre-trained models can affect image classification accuracy using furniture dataset results. This study uses five CNN architectures and focuses on comparing the performance of a custom architecture with four pre-trained architectures, namely VGG-16, MobileNetV2, InceptionV3, and ResNet-50, using furniture images that have five classes such as chairs, tables, cabinets, sofas, and mattresses. The research results show that the models produced by the pre-trained architectures provide higher accuracy and performance, with VGG-16 reaching 97%, MobileNetV2 at 96%, and InceptionV3 and ResNet-50 at 98%. Meanwhile, the custom model only achieved an accuracy of 85%. This research shows that using pre-trained model algorithms significantly improves performance in image classification.

References

H. Ye, X. Zhu, C. Liu, L. Yang, and A. Wang, “Furniture Image Classification Based on Depthwise Group Over-Parameterized Convolution,” Electronics (Switzerland), vol. 11, no. 23, 2022, doi: 10.3390/electronics11233889.

A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” Journal of Applied Informatics and Computing, vol. 4, no. 1, pp. 45–51, 2020, doi: 10.30871/jaic.v4i1.2017.

R. A. Pratama, S. Achmadi, and K. Auliasari, “Penerapan Metode Convolutional Neural Network Pada Aplikasi Deteksi Wajah Pengunjung Perpustakaan,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 1, pp. 253–258, 2022, doi: 10.36040/jati.v6i1.4517.

W. I. Kusumawati and A. Z. Noorizki, “Perbandingan Performa Algoritma VGG16 Dan VGG19 Melalui Metode CNN Untuk Klasifikasi Varietas Beras,” Journal of Computer, Electronic, and Telecommunication, vol. 4, no. 2, 2023, doi: 10.52435/complete.v4i2.387.

A. Mulyanto, E. Susanti, F. Rossi, W. Wajiran, and R. I. Borman, “Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR),” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 7, no. 1, p. 52, 2021, doi: 10.26418/jp.v7i1.44133.

E. M. Sipayung and E. Christopher, “Klasifikasi Image Jenis Kayu pada Furnitur dengan Convolutional Neural Network,” Jurnal Telematika, vol. 18, no. 2, pp. 82–87, 2024, doi: 10.61769/telematika.v18i2.617.

K. Kılıç, U. Özcan, K. Kılıç, and İ. Doğru, “Using Deep Learning Techniques Furniture İmage Classification,” Politeknik Dergisi, vol. 0900, pp. 0–1, 2023, doi: 10.2339/politeknik.1315328.

R. Faturrahman, Y. S. Hariyani, and S. Hadiyoso, “Klasifikasi Jajanan Tradisional Indonesia berbasis Deep Learning dan Metode Transfer Learning,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 11, no. 4, p. 945, 2023, doi: 10.26760/elkomika.v11i4.945.

N. F. Mustamin, Y. Sari, and H. Khatimi, “Menggunakan Arsitektur Cnn,” Jurnal Ilmu Komputer, vol. 8, no. 1, pp. 49–59, 2021.

K. Purcell and J. Brenner, “Pengembangan Model Klasifikasi Produk Furnitur Sebagai Visual Search Menggunakan Algoritma Convolutional Neural Network,” Jurnal Sistem Komputer dan Kecerdasan Buatan vol. 8, no. 1, edisi September, 2024.

O. D. S. Sunanto and P. H. Utomo, “Implementasi Deep Learning Dengan Convolutional Neural Network Untuk Klasifikasi Gambar Sampah Organik Dan Anorganik,” Pattimura Proceeding: Conference of Science and Technology, vol. 1, no. 2, pp. 335–340, 2022.

T. T. Sui, K. Y. Zhao, H. Zhang, and Q. Hua, “Interest points guided convolution neural network for furniture styles classification,” 2019 6th International Conference on Systems and Informatics, ICSAI 2019, no. Icsai, pp. 1302–1307, 2019, doi: 10.1109/ICSAI48974.2019.9010481.

N. K. Qudsi, R. A. Asmara, A. R. Syulistyo, “Identifikasi Citra Tulisan Tangan Digital Menggunakan Convolutional Neural Network (CNN),” Seminar Informatika Aplikatif Polinema (SIAP) , pp. 48–53, 2019.

I. N. Husna, M. Ulum, A. Kurniawan Saputro, D. T. Laksono, and D. N. Purnamasari, “Rancang Bangun Sistem Deteksi Dan Perhitungan Jumlah Orang Menggunakan Metode Convolutional Neural Network (CNN),” Seminar Nasional Fortei Regional, vol. 7, pp. 1–6, 2022.

T. A. Bowo, H. Syaputra, and M. Akbar, “Penerapan Algoritma Convolutional Neural Network Untuk Klasifikasi Motif Citra Batik Solo,” Journal of Software Engineering Ampera, vol. 1, no. 2, pp. 82–96, 2020, doi: 10.51519/journalsea.v1i2.47.

H. Yang, J. Ni, J. Gao, Z. Han, and T. Luan, “A novel method for peanut variety identification and classification by Improved VGG16,” Sci Rep, vol. 11, no. 1, pp. 1–17, 2021, doi: 10.1038/s41598-021-95240-y.

Z. P. Jiang, Y. Y. Liu, Z. E. Shao, and K. W. Huang, “An improved VGG16 model for pneumonia image classification,” Applied Sciences (Switzerland), vol. 11, no. 23, 2021, doi: 10.3390/app112311185.

P. Hridayami, I. K. G. D. Putra, and K. S. Wibawa, “Fish species recognition using VGG16 deep convolutional neural network,” Journal of Computing Science and Engineering, vol. 13, no. 3, pp. 124–130, 2019, doi: 10.5626/JCSE.2019.13.3.124.

Y. Gulzar, “Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique,” Sustainability (Switzerland), vol. 15, no. 3, 2023, doi: 10.3390/su15031906.

B. Karnadi and T. Handhayani, “Klasifikasi Jenis Buah dengan Menggunakan Metode MobileNetv2 dan Inceptionv3,” Jurnal Eksplora Informatika, pp. 35–42, 2024, doi: 10.30864/eksplora.v14i1.1067.

M. Ahmed, N. Afreen, M. Ahmed, M. Sameer, and J. Ahamed, “An inception V3 approach for malware classification using machine learning and transfer learning,” International Journal of Intelligent Networks, vol. 4, no. November 2022, pp. 11–18, 2023, doi: 10.1016/j.ijin.2022.11.005.

M. S. Ahsan, K. Kusrini, and D. Ariatmanto, “Penerapan model InceptionV3 dalam klasifikasi penyakit ayam,” Jnanaloka, pp. 55–62, 2023, doi: 10.36802/jnanaloka.2023.v4-no02-55-62.

N. Behar and M. Shrivastava, “ResNet50-Based Effective Model for Breast Cancer Classification Using Histopathology Images,” CMES - Computer Modeling in Engineering and Sciences, vol. 130, no. 2, pp. 823–839, 2022, doi: 10.32604/cmes.2022.017030.

M. I. Fathur Rozi, N. O. Adiwijaya, and D. I. Swasono, “Identifikasi Kinerja Arsitektur Transfer Learning Vgg16, Resnet-50, Dan Inception-V3 Dalam Pengklasifikasian Citra Penyakit Daun Tomat,” Jurnal Riset Rekayasa Elektro, vol. 5, no. 2, p. 145, 2023, doi: 10.30595/jrre.v5i2.18050.

D. Krstinić, M. Braović, L. Šerić, and D. Božić-Štulić, “Multi-label Classifier Performance Evaluation with Confusion Matrix,” pp. 01–14, 2020, doi: 10.5121/csit.2020.100801.

PlumX Metrics

Published
2025-01-04