Analisis Sentimen Kenaikan PPN menggunakan Algoritma Naïve Bayes dan SVM

  • Ali Nur Ikhsan Universitas Amikom Purwokerto
  • Pungkas Subarkah Universitas Amikom Purwokerto
  • Alifah Dafa Iftinani Universitas Amikom Purwokerto
  • Alif Nur Fadilah Universitas Amikom Purwokerto
Abstract views: 0 ,
Keywords: sentiment analysis, VAT, algorithms, naïve bayes, support vector machine

Abstract

One of the ways to increase state revenue is by raising the Value-Added Tax (VAT). However, implementing a VAT hike policy often elicits both positive and negative responses from the public. With the presence of social media, people can voice their opinions about government policies, including through social media platform X. This study aims to analyze public sentiment on social media X using the Naïve Bayes and Support Vector Machine (SVM) algorithms. The research compares the highest accuracy results before and after the balancing process. The dataset comprises 2,852 rows in CSV format. The findings indicate that the SVM algorithm achieves an accuracy of 98% before balancing and 97% after balancing, while Naïve Bayes achieves an accuracy of 97% before balancing and 90% after balancing. Overall, both algorithms demonstrate good and balanced performance.

 

References

UU No. 7 Tahun 2021, Undang Undang Republik Indonesia No 7 Tahun 2021 Tentang Harmonisasi Peraturan Perpajakan. 2021, p. 224.

H. B. Setiawan and F. U. Najicha, “Perlindungan Data Pribadi Warga Negara Indonesia Terkait Dengan Kebocoran Data,” Jurnal Kewarganegaraan, vol. 6, no. 1, pp. 976–982, 2022.

S. Mufti Prasetiyo, R. Gustiawan, and F. Rizzel Albani, “BIIKMA : Buletin Ilmiah Ilmu Komputer dan Multimedia Analisis Pertumbuhan Pengguna Internet Di Indonesia,” vol. 2, no. 1, 2024, [Online]. Available: https://jurnalmahasiswa.com/index.php/biikma

A. M. Taufiqi and A. Nugroho, “Sentimen Pengguna Twitter Mengenai Isu Kebocoran Data Dengan Algoritma Naïve Bayes,” Jurnal Nasional Ilmu Komputer, vol. 4, no. 1, pp. 1–11, Mar. 2023, doi: 10.47747/jurnalnik.v4i1.1091.

D. Irenniza, A. Putri, F. T. Saputra, and R. Hardiyanti, “Pengaruh Penggunaan Media Sosial Twitter Terhadap Pemenuhan Kebutuhan Informasi (Survei Terhadap Pengikut Akun @Habisnontonfilm),” Jurnal Ilmiah Wahana Pendidikan, vol. 10, no. 8, pp. 410–418, 2024, doi: 10.5281/zenodo.11107309.

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.

O. Fanny and H. Suroyo, “Analisis Sentimen Pengguna Media Sosial Terhadap Omnibus Law Berdasarkan Hashtag di Twitter Analysis of Social Media Users Sentiments against Omnibus Law Based on Hashtags on Twitter,” Sistemasi, vol. 11, no. 1, pp. 197–206, 2022, [Online]. Available: http://sistemasi.ftik.unisi.ac.id

F. Fathonah and A. Herliana, “Penerapan Text Mining Analisis Sentimen Mengenai Vaksin Covid - 19 Menggunakan Metode Naïve Bayes,” Jurnal Sains dan Informatika, vol. 7, no. 2, pp. 155–164, Dec. 2021, doi: 10.34128/jsi.v7i2.331.

J. M. Br Sembiring and H. H, “Naïve Bayes Algorithm Classification In Sentiment Analysis Covid-19 Wikipedia,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 4, pp. 869–875, Aug. 2022, doi: 10.20884/1.jutif.2022.3.4.311.

R. I. A. Aryasatya, “Analisis Sentimen Twitter Terhadap Pernikahan Diusia Muda Menggunakan Metode Support Vector Machine (SVM),” Universitas Teknologi Digital Indonesia, 2023. [Online]. Available: http://eprints.utdi.ac.id/id/eprint/10057

L. B. Ilmawan and M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” ILKOM Jurnal Ilmiah, vol. 12, no. 2, pp. 154–161, Aug. 2020, doi: 10.33096/ilkom.v12i2.597.154-161.

A. S. Rahayu, A. Fauzi, and R. Rahmat, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, p. 349, 2022, doi: 10.30865/json.v4i2.5398.

H. Setiawan, E. Utami, and S. Sudarmawan, “Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes,” Jurnal Komtika (Komputasi dan Informatika), vol. 5, no. 1, pp. 43–51, 2021, doi: 10.31603/komtika.v5i1.5189.

F. Amaliah and I. K. Dwi Nuryana, “Perbandingan Akurasi Metode Lexicon Based Dan Naive Bayes Classifier Pada Analisis Sentimen Pendapat Masyarakat Terhadap Aplikasi Investasi Pada Media Twitter,” Journal of Informatics and Computer Science (JINACS), vol. 3, no. 03, pp. 384–393, 2022, doi: 10.26740/jinacs.v3n03.p384-393.

G. Gumelar, Q. Ain, R. Marsuciati, S. Agustanti Bambang, A. Sunyoto, and M. Syukri Mustafa, “Kombinasi Algoritma Sampling dengan Algoritma Klasifikasi untuk Meningkatkan Performa Klasifikasi Dataset Imbalance.”

F. Destiyanti, A. Id Hadiana, F. Rakhmat Umbara, and U. Jenderal Achmad Yani Jl Terusan Jenderal Jenderal Sudirman, “Penerapan Metode Support Vector Machine dan SMOTE untuk Klasifikasi Sentimen Publik Terhadap Polisi Republik Indonesia,” vol. 8, no. 1, pp. 1–15, 2024.

PlumX Metrics

Published
2025-01-30