Analisis Sentimen Kenaikan PPN menggunakan Algoritma Naïve Bayes dan SVM
Abstract
One of the ways to increase state revenue is by raising the Value-Added Tax (VAT). However, implementing a VAT hike policy often elicits both positive and negative responses from the public. With the presence of social media, people can voice their opinions about government policies, including through social media platform X. This study aims to analyze public sentiment on social media X using the Naïve Bayes and Support Vector Machine (SVM) algorithms. The research compares the highest accuracy results before and after the balancing process. The dataset comprises 2,852 rows in CSV format. The findings indicate that the SVM algorithm achieves an accuracy of 98% before balancing and 97% after balancing, while Naïve Bayes achieves an accuracy of 97% before balancing and 90% after balancing. Overall, both algorithms demonstrate good and balanced performance.
References
UU No. 7 Tahun 2021, Undang Undang Republik Indonesia No 7 Tahun 2021 Tentang Harmonisasi Peraturan Perpajakan. 2021, p. 224.
H. B. Setiawan and F. U. Najicha, “Perlindungan Data Pribadi Warga Negara Indonesia Terkait Dengan Kebocoran Data,” Jurnal Kewarganegaraan, vol. 6, no. 1, pp. 976–982, 2022.
S. Mufti Prasetiyo, R. Gustiawan, and F. Rizzel Albani, “BIIKMA : Buletin Ilmiah Ilmu Komputer dan Multimedia Analisis Pertumbuhan Pengguna Internet Di Indonesia,” vol. 2, no. 1, 2024, [Online]. Available: https://jurnalmahasiswa.com/index.php/biikma
A. M. Taufiqi and A. Nugroho, “Sentimen Pengguna Twitter Mengenai Isu Kebocoran Data Dengan Algoritma Naïve Bayes,” Jurnal Nasional Ilmu Komputer, vol. 4, no. 1, pp. 1–11, Mar. 2023, doi: 10.47747/jurnalnik.v4i1.1091.
D. Irenniza, A. Putri, F. T. Saputra, and R. Hardiyanti, “Pengaruh Penggunaan Media Sosial Twitter Terhadap Pemenuhan Kebutuhan Informasi (Survei Terhadap Pengikut Akun @Habisnontonfilm),” Jurnal Ilmiah Wahana Pendidikan, vol. 10, no. 8, pp. 410–418, 2024, doi: 10.5281/zenodo.11107309.
P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.
O. Fanny and H. Suroyo, “Analisis Sentimen Pengguna Media Sosial Terhadap Omnibus Law Berdasarkan Hashtag di Twitter Analysis of Social Media Users Sentiments against Omnibus Law Based on Hashtags on Twitter,” Sistemasi, vol. 11, no. 1, pp. 197–206, 2022, [Online]. Available: http://sistemasi.ftik.unisi.ac.id
F. Fathonah and A. Herliana, “Penerapan Text Mining Analisis Sentimen Mengenai Vaksin Covid - 19 Menggunakan Metode Naïve Bayes,” Jurnal Sains dan Informatika, vol. 7, no. 2, pp. 155–164, Dec. 2021, doi: 10.34128/jsi.v7i2.331.
J. M. Br Sembiring and H. H, “Naïve Bayes Algorithm Classification In Sentiment Analysis Covid-19 Wikipedia,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 4, pp. 869–875, Aug. 2022, doi: 10.20884/1.jutif.2022.3.4.311.
R. I. A. Aryasatya, “Analisis Sentimen Twitter Terhadap Pernikahan Diusia Muda Menggunakan Metode Support Vector Machine (SVM),” Universitas Teknologi Digital Indonesia, 2023. [Online]. Available: http://eprints.utdi.ac.id/id/eprint/10057
L. B. Ilmawan and M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” ILKOM Jurnal Ilmiah, vol. 12, no. 2, pp. 154–161, Aug. 2020, doi: 10.33096/ilkom.v12i2.597.154-161.
A. S. Rahayu, A. Fauzi, and R. Rahmat, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, p. 349, 2022, doi: 10.30865/json.v4i2.5398.
H. Setiawan, E. Utami, and S. Sudarmawan, “Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes,” Jurnal Komtika (Komputasi dan Informatika), vol. 5, no. 1, pp. 43–51, 2021, doi: 10.31603/komtika.v5i1.5189.
F. Amaliah and I. K. Dwi Nuryana, “Perbandingan Akurasi Metode Lexicon Based Dan Naive Bayes Classifier Pada Analisis Sentimen Pendapat Masyarakat Terhadap Aplikasi Investasi Pada Media Twitter,” Journal of Informatics and Computer Science (JINACS), vol. 3, no. 03, pp. 384–393, 2022, doi: 10.26740/jinacs.v3n03.p384-393.
G. Gumelar, Q. Ain, R. Marsuciati, S. Agustanti Bambang, A. Sunyoto, and M. Syukri Mustafa, “Kombinasi Algoritma Sampling dengan Algoritma Klasifikasi untuk Meningkatkan Performa Klasifikasi Dataset Imbalance.”
F. Destiyanti, A. Id Hadiana, F. Rakhmat Umbara, and U. Jenderal Achmad Yani Jl Terusan Jenderal Jenderal Sudirman, “Penerapan Metode Support Vector Machine dan SMOTE untuk Klasifikasi Sentimen Publik Terhadap Polisi Republik Indonesia,” vol. 8, no. 1, pp. 1–15, 2024.
Copyright (c) 2025 Ali Nur Ikhsan, Pungkas Subarkah, Alifah Dafa Iftinani, Alif Nur Fadilah
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).