Penerapan Algoritma Klasifikasi Dengan Fitur Seleksi Weight By Information Gain Pada Pemodelan Prediksi Kelulusan Mahasiswa
Abstract
The problem faced by institutions of higher education is not exactly of graduation. It is the task of institution of higher education, especially courses in the students academic monitoring. Today, there are many methods or ways to solve various problems of information technology either by machine learning at data mining. This study uses Naive Bayes. Linear Regression, dan Multi Layer Perceptron algorithm also Weight by Information Gain as Features Selection to optimize accuracy in predicting the time of students graduation. The dataset processing with certain attributes including registration line, origin school, origin city, and the semester grade point 1 to 4 in RapidMiner by implementing the three algorithms along with the selection feature produces relatively good accuracy. Naive Bayes produces an accuracy of 81.66% with an execution time of 1.16 seconds, Linear Regression of 80.70% in 2.44 seconds and Multi Layer Perceptron of 82.16% in 1 hour 57 minutes.
Copyright (c) 2020 Infotekmesin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).