Simulasi Computational Fluid Dynamics (CFD) untuk Optimalisasi Proses Perekatan pada Oven Bambu Laminasi

  • Galuh Bahari Universitas Gadjah Mada
  • Inggar Septhia Irawati Departemen Teknik Sipil, Fakultas Teknik, Universitas Gadjah Mada
  • Ignatius Aris Hendaryanto Departemen Teknik Mesin, Sekolah Vokasi, Universitas Gadjah Mada
  • Ilham Ayu Putri Pratiwi Departemen Teknik Mesin, Sekolah Vokasi, Universitas Gadjah Mada
  • Radhian Krisnaputra Departemen Teknik Mesin, Sekolah Vokasi, Universitas Gadjah Mada
  • Sugiyanto Departemen Teknik Mesin, Sekolah Vokasi, Universitas Gadjah Mada
  • Joannes Bimo Wijoyo Departemen Teknik Mesin, Sekolah Vokasi, Universitas Gadjah Mada
Abstract views: 0 ,
Keywords: laminated bamboo, CFD, oven, thermal heating, temperature distribution

Abstract

The utilization of bamboo in architecture and construction as an eco-friendly alternative to wood is steadily increasing. While ovens are crucial tools in the production of laminated bamboo, particularly for heating during the bonding process, research on ovens specifically designed for bamboo lamination remains scarce. This study aims to optimize the design of laminated bamboo ovens using Computational Fluid Dynamics (CFD) simulations to achieve uniform heat distribution and maximize thermal efficiency. Three design iterations were tested: Iteration 1 with an air velocity of 4 m/s, Iteration 2 with 1.5 m/s, and Iteration 3 with 3 m/s. The results revealed that Iteration 1 exhibited uneven heat distribution, with initial temperatures reaching 1175 K before dropping sharply to 800 K. Iteration 2 showed slower initial heating, achieving a final temperature of 360 K, but heat distribution remained suboptimal. Iteration 3 delivered the best performance, achieving uniform and stable heat distribution near the target temperature of 473 K (200 °C). Overall, Iteration 3 demonstrated the most efficient thermal performance, not only meeting the target temperature with consistent heat distribution but also enhancing the overall heating efficiency of the oven.

References

K. A. Harries, P. Morrill, C. Gauss, C. Flower, Y. Akinbade, and D. Trujillo, “Screw withdrawal capacity of full-culm P. edulis bamboo,” Constr Build Mater, vol. 216, 2019, doi: 10.1016/j.conbuildmat.2019.05.009.

A. Dauletbek, H. Li, and R. Lorenzo, “A review on mechanical behavior of laminated bamboo lumber connections,” 2023. doi: 10.1016/j.compstruct.2023.116898.

P. Gholizadeh, H. Z. Hosseinabadi, D. E. Hebel, and A. Javadian, “Investigation of mechanical, physical and thermoacoustic properties of a novel light-weight dense wall panels made of bamboo Phyllostachys Bambusides,” Sci Rep, vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-45515-3.

R. Hartono et al., “Physical, Chemical, and Mechanical Properties of Six Bamboo from Sumatera Island Indonesia and Its Potential Applications for Composite Materials,” Polymers (Basel), vol. 14, no. 22, 2022, doi: 10.3390/polym14224868.

E. A. Widjaja, The Spectacular Indonesian Bamboos, vol. 56, no. 4. 2019.

A. H. Iswanto et al., “Chemical, Physical, and Mechanical Properties of Belangke Bamboo (Gigantochloa pruriens) and Its Application as a Reinforcing Material in Particleboard Manufacturing,” Polymers (Basel), vol. 14, no. 15, 2022, doi: 10.3390/polym14153111.

F. Xiao, Y. Wu, Y. Zuo, L. Peng, W. Li, and X. Sun, “Preparation and bonding performance evaluation of bamboo veneer/foam aluminum composites,” Journal of Forestry Engineering, vol. 6, no. 3, 2021, doi: 10.13360/i.issn.2096-1359.202009024.

J. Liu, A. Zhou, B. Sheng, Y. Liu, and L. Sun, “Effect of temperature on short-term compression creep property of bamboo scrimber,” Journal of Forestry Engineering, vol. 6, no. 2, 2021, doi: 10.13360/j.issn.2096-1359.202006003.

R. Lorenzo, M. Godina, L. Mimendi, and H. Li, “Determination of the physical and mechanical properties of moso, guadua and oldhamii bamboo assisted by robotic fabrication,” Journal of Wood Science, vol. 66, no. 1, 2020, doi: 10.1186/s10086-020-01869-0.

J. Deng, X. Wei, H. Zhou, G. Wang, and S. Zhang, “Inspiration from table tennis racket: Preparation of rubber-wood-bamboo laminated composite (RWBLC) and its response characteristics to cyclic perpendicular compressive load,” Compos Struct, vol. 241, 2020, doi: 10.1016/j.compstruct.2020.112135.

A. Chow, M. H. Ramage, and D. U. Shah, “Optimising ply orientation in structural laminated bamboo,” Constr Build Mater, vol. 212, 2019, doi: 10.1016/j.conbuildmat.2019.04.025.

L. Molari, L. Mentrasti, and M. Fabiani, “Mechanical characterization of five species of Italian bamboo,” Structures, vol. 24, 2020, doi: 10.1016/j.istruc.2019.12.022.

W. N. Nkeuwa, J. Zhang, K. E. Semple, M. Chen, Y. Xia, and C. Dai, “Bamboo-based composites: A review on fundamentals and processes of bamboo bonding,” 2022. doi: 10.1016/j.compositesb.2022.109776.

Y. Sewar, M. Amran, S. Avudaiappan, Y. Gamil, and R. S. M. Rashid, “Bonding strength performance of bamboo-based composite materials: An in-depth insight for sustainable construction applications,” Heliyon, vol. 10, no. 13, p. e32155, 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e32155.

Y. He, X. Jin, J. Li, and D. Qin, “Mechanical and Fire Properties of Flame-Retardant Laminated Bamboo Lumber Glued with Phenol Formaldehyde and Melamine Urea Formaldehyde Adhesives,” Polymers (Basel), vol. 16, no. 6, 2024, doi: 10.3390/polym16060781.

Y. Huang, Q. Lin, C. Yang, G. Bian, Y. Zhang, and W. Yu, “Multi-scale characterization of bamboo bonding interfaces with phenol-formaldehyde resin of different molecular weight to study the bonding mechanism,” J R Soc Interface, vol. 17, no. 162, 2020, doi: 10.1098/rsif.2019.0755.

W. N. S. N. Z. Abidin et al., “Properties of Phenol Formaldehyde-Bonded Layered Laminated Woven Bamboo Mat Boards Made from Gigantochloa scortechinii,” Applied Sciences (Switzerland), vol. 13, no. 1, 2023, doi: 10.3390/app13010047.

Q. Wang, X. Wu, C. Yuan, Z. Lou, and Y. Li, “Effect of saturated steam heat treatment on physical and chemical properties of bamboo,” Molecules, vol. 25, no. 8, 2020, doi: 10.3390/molecules25081999.

M. Al-Nasser, I. Fayssal, and F. Moukalled, “Numerical simulation of bread baking in a convection oven,” Appl Therm Eng, vol. 184, 2021, doi: 10.1016/j.applthermaleng.2020.116252.

M. Khatibi, H. Zamani, and S. M. Mirzababaee, “Flatbread baking process under time-varying input power in a home-scale electric oven: 3D CFD simulation with experimental validation,” Thermal Science and Engineering Progress, vol. 46, 2023, doi: 10.1016/j.tsep.2023.102129.

Y. Mansour, O. Rouaud, R. Slim, and P. Rahmé, “Thermal characterization of a high-temperature industrial bread-baking oven: A comprehensive experimental and numerical study,” Appl Therm Eng, vol. 236, 2024, doi: 10.1016/j.applthermaleng.2023.121467.

G. A. Constantin, M. G. Munteanu, G. Voicu, G. Paraschiv, and E. M. Ștefan, “An Analysis of Air Flow in the Baking Chamber of a Tunnel-Type Electric Oven,” Computation, vol. 11, no. 12, 2023, doi: 10.3390/computation11120236.

M. Dharmaraj, K. V. S. Kumar, S. Vikram, and K. A. Srikishore, “The computational fluid dynamics (CFD) investigation of steam flow and temperature distribution in a small scale idly-baking oven,” in AIP Conference Proceedings, 2021. doi: 10.1063/5.0069092.

PlumX Metrics

Published
2025-01-30